skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Scaling flowering onset and duration responses among species predicts phenological community reassembly under warming
Abstract Global warming has caused widespread shifts in plant phenology among species in the temperate zone, but it is unclear how population‐level responses will scale to alter the structure of the flowering season at the community level. This knowledge gap exists largely because—while the climatic sensitivity of first flowering within populations has been studied extensively—little is known about the responsiveness of the duration of a population's flowering period. This limits our ability to anticipate how the entire flowering periods of co‐occurring species may continue to change under warming. Nonetheless, flowering sensitivity to temperature often varies predictably among species between and within communities, which may help forecast temperature‐related changes to a community's flowering season. However, no studies—empirical or theoretical—have assessed how patterns of variation in flowering sensitivity among species could scale to alter community‐level flowering changes under warming. Here, we provide a conceptual overview of how variation in the sensitivity of flowering onset and duration among species can mediate changes to a community's flowering season due to warming trends. Specifically, we focus on the effects of differences in (1) the mean sensitivity of flowering onset and duration among communities and (2) the sensitivity of flowering onsets and durations among species flowering sequentially through the season within a community. We evaluated the manner and degree in which these forms of between‐species variation in sensitivity might affect the structure of the flowering season—both independently and interactively—using simulations, which covered a wide but empirically informed range of parameter values and combinations representing distinct community‐level patterns. Our findings predict that communities across the temperate zone will exhibit varied and often contrasting flowering responses to warming across biomes, underscoring that accounting for the temperature sensitivity of both phenological onset and duration among species is essential for understanding community‐level flowering dynamics in a warming world.  more » « less
Award ID(s):
2242804 2105932
PAR ID:
10599875
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecosphere
Volume:
16
Issue:
3
ISSN:
2150-8925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Global change is altering the phenology and geographic ranges of flowering species, with potentially profound consequences for the timing and composition of floral resources and the seasonal structure of ecological communities. However, shifts in flowering phenology and species distributions have historically been studied in isolation due to disciplinary silos and limited data, leaving critical gaps in our understanding of their combined effects. To address this, we used millions of herbarium and occurrence records to model phenological and range shifts for 2,837 plant species in the United States across historical, recent, and projected climate and land cover conditions, enabling us to scale responses from species to communities, and from local to continental geographies. Our analysis reveals that communities are shifting toward earlier, longer flowering seasons in most biomes, with co-flowering species richness increasing at the edges of the season and declining at historical peaks—trends projected to intensify under ongoing environmental trends. Although these shifts operate concurrently, they affect different aspects of the flowering season: phenological changes primarily alter seasonality—its start, end, and duration—and co-flowering diversity at the edges of the season, while range shifts more strongly influence co-flowering species richness during historical seasonal peaks, and attributes tied to community composition, such as patterns of flowering synchrony among co-occurring species. Together, these results demonstrate that shifts in phenology and species ranges act synergistically to restructure the flowering seasons across North America, revealing wide variation in the pace and magnitude of change among biomes. 
    more » « less
  2. Abstract Background and Aims When plant communities are exposed to herbicide ‘drift’, wherein particles containing the active ingredient travel off-target, interspecific variation in resistance or tolerance may scale up to affect community dynamics. In turn, these alterations could threaten the diversity and stability of agro-ecosystems. We investigated the effects of herbicide drift on the growth and reproduction of 25 wild plant species to make predictions about the consequences of drift exposure on plant-plant interactions and the broader ecological community. Methods We exposed potted plants from species that commonly occur in agricultural areas to a drift-level dose of the widely used herbicide dicamba or a control solution in the glasshouse. We evaluated species-level variation in resistance and tolerance for vegetative and floral traits. We assessed community-level impacts of drift by comparing species evenness and flowering networks of glasshouse synthetic communities comprised of drift-exposed and control plants. Key Results Species varied significantly in resistance and tolerance to dicamba drift: some were negatively impacted while others showed overcompensatory responses. Species also differed in the way they deployed flowers over time following drift exposure. While drift had negligeable effects on community evenness based on vegetative biomass, it caused salient differences in the structure of coflowering networks within communities. Drift reduced the degree and intensity of flowering overlap among species, altered the composition of groups of species that were more likely to coflower with each other than with others, and shifted species roles (e.g., from dominant to inferior floral producers and vice versa). Conclusions These results demonstrate that even low levels of herbicide exposure can significantly alter plant growth and reproduction, particularly flowering phenology. If field-grown plants respond similarly, then these changes would likely impact plant-plant competitive dynamics and potentially plant-pollinator interactions occurring within plant communities at the agro-ecological interface. 
    more » « less
  3. Many plants are responding to increases in spring temperatures by advancing their leaf‐out and flowering times in temperate regions around the world. The magnitudes of species' sensitivities to temperature vary widely, and patterns within that variation can illuminate underlying phenological drivers related to species' life histories and local‐scale adaptations.The USA National Phenology Network (USA‐NPN) and the National Ecological Observatory Network (NEON) are two rapidly growing, taxonomically and geographically extensive phenology data resources in the USA that offer opportunities to explore emergent properties of spring phenology. Using observations of leaf‐out and flowering in temperate deciduous plant species from USA‐NPN (2009–2024) and NEON (2014–2022), we estimated species‐level flowering (n = 164) and leaf‐out (n = 136) sensitivities to temperatures of the preceding months, obtained through PRISM. We used the results to assess differences in sensitivities between the two datasets and among life history traits (e.g. introduced or native status, seasonal timing and growth habit) and to explore latitudinal patterns in sensitivity among and within species. We found significant relationships between temperature and leaf‐out phenology (2009–2024 for 109 (80%) species, ranging from −7.4 to −1.3 days/°C, and between temperature and flowering phenology for 140 (85%) species, ranging from −8.0 to −1.1 days/°C. Plant sensitivities were highly consistent among the USA‐NPN and NEON datasets, suggesting these datasets can be reasonably combined to expand the coverage of publicly available phenological data across the USA. Introduced species showed stronger sensitivity to temperature than native species for both leaf‐out (−0.8 days/°C difference) and flowering (−0.7 days/°C difference). The strongest (i.e. most negative) leaf‐out sensitivities to temperature were associated with earlier leaf‐out dates and strong flowering sensitivities. Latitudinal analyses within and across species indicate that flowering and leaf‐out sensitivities are both stronger at lower latitudes. Synthesis. Phenological ‘big data’ encompassing over 100 species across the eastern USA shows that leaf‐out and flowering occur earlier with warmer temperatures and that native species and individuals at high latitudes tend to have weaker temperature sensitivities than introduced species and more southern plants; these findings suggest adaptations within and across species to avoid leafing out and flowering under harsh environmental conditions. 
    more » « less
  4. Forecasting the impacts of changing climate on the phenology of plant populations is essential for anticipating and managing potential ecological disruptions to biotic communities. Herbarium specimens enable assessments of plant phenology across broad spatiotemporal scales. However, specimens are collected opportunistically, and it is unclear whether their collection dates – used as proxies of phenological stages – are closest to the onset, peak, or termination of a phenophase, or whether sampled individuals represent early, average, or late occurrences in their populations. Despite this, no studies have assessed whether these uncertainties limit the utility of herbarium specimens for estimating the onset and termination of a phenophase. Using simulated data mimicking such uncertainties, we evaluated the accuracy with which the onset and termination of population‐level phenological displays (in this case, of flowering) can be predicted from natural‐history collections data (controlling for biases in collector behavior), and how the duration, variability, and responsiveness to climate of the flowering period of a species and temporal collection biases influence model accuracy. Estimates of population‐level onset and termination were highly accurate for a wide range of simulated species' attributes, but accuracy declined among species with longer individual‐level flowering duration and when there were temporal biases in sample collection, as is common among the earliest and latest‐flowering species. The amount of data required to model population‐level phenological displays is not impractical to obtain; model accuracy declined by less than 1 day as sample sizes rose from 300 to 1000 specimens. Our analyses of simulated data indicate that, absent pervasive biases in collection and if the climate conditions that affect phenological timing are correctly identified, specimen data can predict the onset, termination, and duration of a population's flowering period with similar accuracy to estimates of median flowering time that are commonplace in the literature. 
    more » « less
  5. Climate change has resulted in increased temperature means across the globe. Many angiosperms flower earlier in response to rising temperature and the phenologies of these species are reasonably well predicted by models that account for spring (early growing season) and winter temperatures. Surprisingly, however, exceptions to the general pattern of precocious flowering are common. Many species either do not appear to respond or even delay flowering in, or following, warm growing seasons. Existing phenological models have not fully addressed such exceptions to the common association of advancing phenologies with warming temperatures. The phenological events that are typically recorded (e.g., onset of flowering) are but one phase in a complex developmental process that often begins one or more years previously, and flowering time may be strongly influenced by temperature over the entire multi-year course of flower development. We propose a series of models that explore effects of growing-season temperature increase on the multiple processes of flower development and how changes in development may impact the timing of anthesis. We focus on temperate forest trees, which are characterized by preformation, the initiation of flower primordia one or more years prior to anthesis. We then synthesize the literature on flower development to evaluate the models. Although fragmentary, the existing data suggest the potential for temperature to affect all aspects of flower development in woody perennials. But, even for relatively well studied taxa, the critical developmental responses that underlie phenological patterns are difficult to identify. Our proposed models explain the seemingly counter-intuitive observations that warmer growingseason temperatures delay flowering in many species. Future research might concentrate on taxa that do not appear to respond to temperature, or delay flowering in response to warm temperatures, to understand what processes contribute to this pattern. 
    more » « less