skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dietary Variability Among Mountain Gorilla Groups Across Volcanoes National Park, Rwanda
ABSTRACT Gaining a more complete understanding of a species' dietary variability is crucial to properly discern distribution, population growth trends, and conservation actions. Endangered mountain gorillas live in topographically complex forests covering a wide elevational range and diverse habitat matrices. Since 1967, mountain gorillas have been studied at high elevations in the southwest of the Volcanoes National Park (VNP) in Rwanda, where groups use different compositions of habitats and have been growing at higher rates than groups in the northeast VNP region, which is characterized by lower elevations. Building on previous efforts, we describe dietary variability among VNP mountain gorilla groups by integrating data from groups ranging in the northeast VNP. We assessed and compared nutritional components of key foods (making up 80% of the diet) to better understand whether variation in diet quality could be linked to within‐population growth differences. Feeding and ranging data were collected between November 2019 and December 2022, using long‐term monitoring data, group scans, and focal animal sampling. To compare diet quality, we combined nutritional values from newly collected food plants and previously collected and assessed food plant samples using comparable field and laboratory methods. We recorded 57 new foods for the study population. Groups in the southwest (N = 8) and the northeast (N = 4) regions of VNP used different vegetation zones, and there was high dietary variability with low diet overlap among these regions. Although northeast groups rely on more diverse diets, key foods (making up ~80% of the diet) had comparable nutrient concentrations to southwest groups. This suggests that diet quality is unlikely to be a main driver of observed heterogeneous population growth. For follow‐up research, we discuss alternative explanations linked to food distribution, biomass, and energy expenditure to access foods. Our findings add important information for future habitat suitability assessments essential for mountain gorilla conservation management and habitat restoration and expansion efforts.  more » « less
Award ID(s):
1520221 1751608 2120910
PAR ID:
10599966
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
15
Issue:
5
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The robust masticatory system of mountain gorillas is thought to have evolved for the comminution of tough vegetation, yet, compared to other primates, the toughness of the mountain gorilla diet is unremarkable. This may be a result of low plant toughness in the mountain gorilla environment or of mountain gorillas feeding selectively on low‐toughness foods. The goal of this paper is to determine how the toughness of the mountain gorilla diet varies across their habitat, which spans a large altitudinal range, and whether there is a relationship between toughness and food selection by mountain gorillas. We collected data on the following variables to determine whether, and if so how, they change with altitude: leaf toughness of two plant species consumed by mountain gorillas, at every 100 m increase in altitude (2,600–3,700 m); toughness of consumed foods comprising over 85% of the gorilla diet across five vegetation zones; and toughness of unconsumed/infrequently consumed plant parts of those foods. Although leaf toughness increased with altitude, the toughness of the gorilla diet remained similar. There was a negative relationship between toughness and consumption frequency, and toughness was a better predictor of consumption frequency than plant frequency, biomass, and density. Consumed plant parts were less tough than unconsumed/infrequently consumed parts and toughness of the latter increased with altitude. Although it is unclear whether gorillas select food based on toughness or use toughness as a sensory cue to impart other plant properties (e.g., macronutrients, chemicals), our results that gorillas maintain a consistent low‐toughness dietary profile across altitude, despite toughness increasing with altitude, suggest that the robust gorilla masticatory apparatus evolved for repetitive mastication of foods that are not high in toughness. 
    more » « less
  2. Dental microwear reflects the abrasiveness of foodstuffs consumed by extant primates and it is commonly used to trace dietary adapta-tions in fossil hominins. However, the impact of feeding events and ecological constraints on micro-scale tooth wear formation processes remain unclear. Here, we use dental buccal-mi-crowear analysis to test age-related effects of physical food processing on tooth-use in a natu-rally accumulated skeletal assemblage from the well-documented population of mountain gorillas from Volcanoes National Park, Rwanda. We analyzed dental microwear pattern of single teeth belonging to individual skeletons: 14 decid-uous m2 (aged 1.2-6.08 years) and 39 permanent molars (~90% M2) of adult gorillas (10.69-44.55 years, 25 males and 14 females). Our results indicate that adult gorillas present more abraded molar buccal surfaces, with significantly higher densities and longer micro-striations, than imma-ture individuals, which reflects the abrasive potential of ingested foods and the micro-stria-tion cumulative process. However, we also found that dental buccal-microwear variability was not associated with age when only adult gorillas were considered. Thus, gorillas from this popula-tion present a stable microwear pattern through adulthood, despite intraindividual variability in feeding ecology. Our findings show the cumulative process of dental buccal-microwear as immature mountain gorillas increase their intake of solid foods and develop an adult diet; but also, the stability of this pattern when diet over time is stable. We confirm that dental buccal-microwear variability is a reasonable proxy for feeding ecology in primates, although seasonality, habitat variability and diet proportions at individual level should be considered in future studies. 
    more » « less
  3. Abstract Living in a rapidly changing environment can alter stress physiology at the population level, with negative impacts on health, reproductive rates, and mortality that may ultimately result in species decline. Small, isolated animal populations where genetic diversity is low are at particular risks, such as endangered Virunga mountain gorillas (Gorilla beringei beringei). Along with climate change‐associated environmental shifts that are affecting the entire population, subpopulations of the Virunga gorillas have recently experienced extreme changes in their social environment. As the growing population moves closer to the forest's carrying capacity, the gorillas are coping with rising population density, increased frequencies of interactions between social units, and changing habitat use (e.g., more overlapping home ranges and routine ranging at higher elevations). Using noninvasive monitoring of fecal glucocorticoid metabolites (FGM) on 115 habituated Virunga gorillas, we investigated how social and ecological variation are related to baseline FGM levels, to better understand the adaptive capacity of mountain gorillas and monitor potential physiological indicators of population decline risks. Generalized linear mixed models revealed elevated mean monthly baseline FGM levels in months with higher rainfall and higher mean maximum and minimum temperature, suggesting that Virunga gorillas might be sensitive to predicted warming and rainfall trends involving longer, warmer dry seasons and more concentrated and extreme rainfall occurrences. Exclusive use of smaller home range areas was linked to elevated baseline FGM levels, which may reflect reduced feeding efficiency and increased travel efforts to actively avoid neighboring groups. The potential for additive effects of stress‐inducing factors could have short‐ and long‐term impacts on the reproduction, health, and ultimately survival of the Virunga gorilla population. The ongoing effects of environmental changes and population dynamics must be closely monitored and used to develop effective long‐term conservation strategies that can help address these risk factors. 
    more » « less
  4. Mountain gorillas are particularly inbred compared to other gorillas and even the most inbred human populations. As mountain gorilla skeletal material accumulated during the 1970s, researchers noted their pronounced facial asymmetry and hypothesized that it reflects a population-wide chewing side preference. However, asymmetry has also been linked to environmental and genetic stress in experimental models. Here, we examine facial asymmetry in 114 crania from three Gorilla subspecies using 3D geometric morphometrics. We measure fluctuating asymmetry (FA), defined as random deviations from perfect symmetry, and population-specific patterns of directional asymmetry (DA). Mountain gorillas, with a current population size of about 1000 individuals, have the highest degree of facial FA (explaining 17% of total facial shape variation), followed by Grauer gorillas (9%) and western lowland gorillas (6%), despite the latter experiencing the greatest ecological and dietary variability. DA, while significant in all three taxa, explains relatively less shape variation than FA does. Facial asymmetry correlates neither with tooth wear asymmetry nor increases with age in a mountain gorilla subsample, undermining the hypothesis that facial asymmetry is driven by chewing side preference. An examination of temporal trends shows that stress-induced developmental instability has increased over the last 100 years in these endangered apes. 
    more » « less
  5. Abstract ObjectivesSeveral theories have been proposed to explain the impact of ecological conditions on differences in life history variables within and between species. Here we compare female life history parameters of one western lowland gorilla population(Gorilla gorilla gorilla) and two mountain gorilla populations(Gorilla beringei beringei). Materials and MethodsWe compared the age of natal dispersal, age of first birth, interbirth interval, and birth rates using long‐term demographic datasets from Mbeli Bai (western gorillas), Bwindi Impenetrable National Park and the Virunga Massif (mountain gorillas). ResultsThe Mbeli western gorillas had the latest age at first birth, longest interbirth interval, and slowest surviving birth rate compared to the Virunga mountain gorillas. Bwindi mountain gorillas were intermediate in their life history patterns. DiscussionThese patterns are consistent with differences in feeding ecology across sites. However, it is not possible to determine the evolutionary mechanisms responsible for these differences, whether a consequence of genetic adaptation to fluctuating food supplies (“ecological risk aversion hypothesis”) or phenotypic plasticity in response to the abundance of food (“energy balance hypothesis”). Our results do not seem consistent with the extrinsic mortality risks at each site, but current conditions for mountain gorillas are unlikely to match their evolutionary history. Not all traits fell along the expected fast‐slow continuum, which illustrates that they can vary independently from each other (“modularity model”). Thus, the life history traits of each gorilla population may reflect a complex interplay of multiple ecological influences that are operating through both genetic adaptations and phenotypic plasticity. 
    more » « less