Abstract The global 3‐dimensional structure of the concentric traveling ionospheric disturbances (CTIDs) triggered by 2022 Tonga volcano was reconstructed by using the 3‐dimensional computerized ionospheric tomography (3DCIT) technique and extensive global navigation satellite system (GNSS) observations. This study provides the first estimation of the CTIDs vertical wavelengths, ∼736 km, which was much larger than the gravity wave (GW) vertical wavelength, 240–400 km, estimated using ICON neutral wind observations. Notable trend with the variation of azimuth was also found in horizontal speeds at 200 and 500 km altitudes and differences between them. These results imply that (a) the global propagation of Lamb waves determined the arrival time of local ionospheric disturbances, and (b) the arriving Lamb waves caused vertical atmospheric perturbations that are not typical of GWs, resulting in local thermospheric horizontal wave propagation which is faster than the Lamb wave propagation at lower altitudes.
more »
« less
Comments on “horizontal gravity disturbance vector in atmospheric dynamics” by Peter C. Chu
In a recent paper [Chu (2023; Chu23)], the author formulated the equations governing atmospheric motion in a spheroidal coordinate system. Since the mass distribution of the Earth is not exactly spheroidal, the true gravity is not vertical in that coordinate system. Chu23 compared the magnitude of the static horizontal component of gravity in that system to those of the dynamically active forces and concluded that the horizontal components of gravity should not be neglected. In recent papers by the authors [Chang and Wolfe (2022; CW22) and Stewart and McWilliams (2022; CW22)], we explained that the actual interpretation of the approximation made in atmospheric and oceanic modeling is not neglecting the horizontal component of the true gravity, but is a geometrical approximation, approximating nearly spheroidal geopotential surfaces with bumps on which the true gravity is vertical by exactly spheroidal surfaces. We showed that under such an interpretation, the errors due to the geometrical approximation are small. Chu23 claimed that CW22 and SM22 erroneously neglected the gravity perturbations in their analyses. Here, we explain further the differences between these approaches, in the process showing that the criticisms of Chu23 on CW22 and SM22 are invalid, further supporting our conclusion that the horizontal component of the true gravity is not relevant in ocean and atmospheric dynamics. Physically, the reason why horizontal gravity is irrelevant in the coordinate system used by Chu23 is that it is balanced by a static horizontal pressure gradient force.
more »
« less
- Award ID(s):
- 2048826
- PAR ID:
- 10599987
- Publisher / Repository:
- https://www.sciencedirect.com
- Date Published:
- Journal Name:
- Dynamics of Atmospheres and Oceans
- Volume:
- 103
- Issue:
- C
- ISSN:
- 0377-0265
- Page Range / eLocation ID:
- 101382
- Subject(s) / Keyword(s):
- Gravity atmospheric dynamics momentum balance coordinate systems
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Atmospheric gravity waves and traveling ionospheric disturbances can be observed in the neutral atmosphere and the ionosphere at a wide range of spatial and temporal scales. Especially at medium scales, these oscillations are often not resolved in general circulation models and are parameterized. We show that ionospheric disturbances forced by upward-propagating atmospheric gravity waves can be simultaneously observed with the EISCAT very high frequency incoherent scatter radar and the Nordic Meteor Radar Cluster. From combined multi-static measurements, both vertical and horizontal wave parameters can be determined by applying a specially developed Fourier filter analysis method. This method is demonstrated using the example of a strongly pronounced wave mode that occurred during the EISCAT experiment on 7 July 2020. Leveraging the developed technique, we show that the wave characteristics of traveling ionospheric disturbances are notably impacted by the fall transition of the mesosphere and lower thermosphere. We also demonstrate the application of using the determined wave parameters to infer the thermospheric neutral wind velocities. Applying the dissipative anelastic gravity wave dispersion relation, we obtain vertical wind profiles in the lower thermosphere.more » « less
-
A finite difference scheme is used to develop a numerical method to solve the flow of an unbounded viscoelastic fluid with zero to moderate inertia around a prolate spheroidal particle. The equations are written in prolate spheroidal coordinates, and the shape of the particle is exactly resolved as one of the coordinate surfaces representing the inner boundary of the computational domain. As the prolate spheroidal grid is naturally clustered near the particle surface, good resolution is obtained in the regions where the gradients of relevant flow variables are most significant. This coordinate system also allows large domain sizes with a reasonable number of mesh points to simulate unbounded fluid around a particle. Changing the aspect ratio of the inner computational boundary enables simulations of different particle shapes ranging from a sphere to a slender fiber. Numerical studies of the latter particle shape allow testing of slender body theories. The mass and momentum equations are solved with a Schur complement approach allowing us to solve the zero inertia case necessary to isolate the viscoelastic effects. The singularities associated with the coordinate system are overcome using L’Hopital’s rule. A straightforward imposition of conditions representing a time-varying combination of linear flows on the outer boundary allows us to study various flows with the same computational domain geometry. For the special but important case of zero fluid and particle inertia we obtain a novel formulation that satisfies the force- and torque-free constraint in an iteration-free manner. The numerical method is demonstrated for various flows of Newtonian and viscoelastic fluids around spheres and spheroids (including those with large aspect ratio). Good agreement is demonstrated with existing theoretical and numerical results.more » « less
-
We study the non-radial oscillation modes of strange quark stars with a homogeneous core and a crust made of strangelets. Using a 2-component equation-of-state model (core+crust) for strange quark stars that can produce stars as heavy as 2 solar masses, we identify the high-frequency l=2 spheroidal (f, p) in Newtonian gravity, using the Cowling approximation. The results are compared to the case of homogeneous compact stars such as polytropic neutron stars, as well as bare strange stars. We find that the strangelet crust only increases very slightly the frequency of the spheroidal modes, and that Newtonian gravity overestimates the mode frequencies of the strange star, as is the case for neutron stars.more » « less
-
Abstract The so-called traditional approximation, wherein the component of the Coriolis force proportional to the cosine of latitude is ignored, is frequently made in order to simplify the equations of atmospheric circulation. For velocity fields whose vertical component is comparable to their horizontal component (such as convective circulations), and in the tropics where the sine of latitude vanishes, the traditional approximation is not justified. We introduce a framework for studying the effect of diabatic heating on circulations in the presence of both traditional and nontraditional terms in the Coriolis force. The framework is intended to describe steady convective circulations on anfplane in the presence of radiation and momentum damping. We derive a single elliptic equation for the horizontal velocity potential, which is a generalization of the weak temperature gradient (WTG) approximation. The elliptic operator depends on latitude, radiative damping, and momentum damping coefficients. We show how all other dynamical fields can be diagnosed from this velocity potential; the horizontal velocity induced by the Coriolis force has a particularly simple expression in terms of the velocity potential. Limiting examples occur at the equator, where only the nontraditional terms are present, at the poles, where only the traditional terms appear, and in the absence of radiative damping where the WTG approximation is recovered. We discuss how the framework will be used to construct dynamical, nonlinear convective models, in order to diagnose their consequent upscale momentum and temperature fluxes.more » « less
An official website of the United States government

