Abstract Consider a pair of elementsfandgin a commutative ringQ. Given a matrix factorization offand another ofg, the tensor product of matrix factorizations, which was first introduced by Knörrer and later generalized by Yoshino, produces a matrix factorization of the sum$$f+g$$. We will study the tensor product ofd-fold matrix factorizations, with a particular emphasis on understanding when the construction has a non-trivial direct sum decomposition. As an application of our results, we construct indecomposable maximal Cohen–Macaulay and Ulrich modules over hypersurface domains of a certain form.
more »
« less
Non-existence of Ulrich modules over Cohen-Macaulay local rings
Over a Cohen-Macaulay local ring, the minimal number of generators of a maximal Cohen-Macaulay module is bounded above by its multiplicity. In 1984 Ulrich [Math. Z. 188 (1984), pp. 23–32] asked whether there always exist modules for which equality holds; such modules are known nowadays as Ulrich modules. We answer this question in the negative by constructing families of two dimensional Cohen-Macaulay local rings that have no Ulrich modules. Some of these examples are Gorenstein normal domains; others are even complete intersection domains, though not normal.
more »
« less
- PAR ID:
- 10600005
- Publisher / Repository:
- AMS
- Date Published:
- Journal Name:
- Communications of the American Mathematical Society
- Volume:
- 5
- Issue:
- 5
- ISSN:
- 2692-3688
- Page Range / eLocation ID:
- 195 to 208
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We use the framework of perfectoid big Cohen-Macaulay (BCM) algebras to define a class of singularities for pairs in mixed characteristic, which we call purely BCM-regular singularities, and a corresponding adjoint ideal. We prove that these satisfy adjunction and inversion of adjunction with respect to the notion of BCM-regularity and the BCM test ideal defined by the first two authors. We compare them with the existing equal characteristic purely log terminal (PLT) and purely F F -regular singularities and adjoint ideals. As an application, we obtain a uniform version of the Briançon-Skoda theorem in mixed characteristic. We also use our theory to prove that two-dimensional Kawamata log terminal singularities are BCM-regular if the residue characteristic p > 5 p>5 , which implies an inversion of adjunction for three-dimensional PLT pairs of residue characteristic p > 5 p>5 . In particular, divisorial centers of PLT pairs in dimension three are normal when p > 5 p > 5 . Furthermore, in Appendix A we provide a streamlined construction of perfectoid big Cohen-Macaulay algebras and show new functoriality properties for them using the perfectoidization functor of Bhatt and Scholze.more » « less
-
If I is an ideal in a Gorenstein ring S, and S/I is Cohen-Macaulay, then the same is true for any linked ideal I ; but such statements hold for residual intersections of higher codimension only under restrictive hypotheses, not satisfied even by ideals as simple as the ideal Ln of minors of a generic 2 × n matrix when n > 3. In this paper we initiate the study of a different sort of Cohen-Macaulay property that holds for certain general residual intersections of the maximal (interesting) codimension, one less than the analytic spread of I. For example, suppose that K is the residual intersection of Ln by 2n − 4 general quadratic forms in Ln. In this situation we analyze S/K and show that In−3(S/K) is a self-dual maximal Cohen-Macaulay S/K-module with linear free resolution over S. The technical heart of the paper is a result about ideals of analytic spread 1 whose high powers are linearly presented.more » « less
An official website of the United States government

