skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2200732

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This paper extends the results of Boij, Eisenbud, Erman, Schreyer and Söderberg on the structure of Betti cones of finitely generated graded modules and finite free complexes over polynomial rings, to all finitely generated graded rings admitting linear Noether normalizations. The key new input is the existence of lim Ulrich sequences of graded modules over such rings. 
    more » « less
  2. Buchweitz-Greuel-Schreyer conjectured in 1987 a lower bound on the ranks of matrix factorizations over certain local hypersurface rings [Invent. Math. 88 (1987), pp. 165–182]. We study a graded version of this conjecture, and we show that it implies a novel conjecture concerning the cohomology of sheaves over non-Fano projective hypersurfaces. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  3. Free, publicly-accessible full text available February 1, 2026
  4. Over a Cohen-Macaulay local ring, the minimal number of generators of a maximal Cohen-Macaulay module is bounded above by its multiplicity. In 1984 Ulrich [Math. Z. 188 (1984), pp. 23–32] asked whether there always exist modules for which equality holds; such modules are known nowadays as Ulrich modules. We answer this question in the negative by constructing families of two dimensional Cohen-Macaulay local rings that have no Ulrich modules. Some of these examples are Gorenstein normal domains; others are even complete intersection domains, though not normal. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  5. Free, publicly-accessible full text available January 1, 2026