Background The proliferation of mobile health (mHealth) applications is partly driven by the advancements in sensing and communication technologies, as well as the integration of artificial intelligence techniques. Data collected from mHealth applications, for example, on sensor devices carried by patients, can be mined and analyzed using artificial intelligence–based solutions to facilitate remote and (near) real-time decision-making in health care settings. However, such data often sit in data silos, and patients are often concerned about the privacy implications of sharing their raw data. Federated learning (FL) is a potential solution, as it allows multiple data owners to collaboratively train a machine learning model without requiring access to each other’s raw data. Objective The goal of this scoping review is to gain an understanding of FL and its potential in dealing with sensitive and heterogeneous data in mHealth applications. Through this review, various stakeholders, such as health care providers, practitioners, and policy makers, can gain insight into the limitations and challenges associated with using FL in mHealth and make informed decisions when considering implementing FL-based solutions. Methods We conducted a scoping review following the guidelines of PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews). We searched 7 commonly used databases. The included studies were analyzed and summarized to identify the possible real-world applications and associated challenges of using FL in mHealth settings. Results A total of 1095 articles were retrieved during the database search, and 26 articles that met the inclusion criteria were included in the review. The analysis of these articles revealed 2 main application areas for FL in mHealth, that is, remote monitoring and diagnostic and treatment support. More specifically, FL was found to be commonly used for monitoring self-care ability, health status, and disease progression, as well as in diagnosis and treatment support of diseases. The review also identified several challenges (eg, expensive communication, statistical heterogeneity, and system heterogeneity) and potential solutions (eg, compression schemes, model personalization, and active sampling). Conclusions This scoping review has highlighted the potential of FL as a privacy-preserving approach in mHealth applications and identified the technical limitations associated with its use. The challenges and opportunities outlined in this review can inform the research agenda for future studies in this field, to overcome these limitations and further advance the use of FL in mHealth. 
                        more » 
                        « less   
                    This content will become publicly available on January 9, 2026
                            
                            Researching public health datasets in the era of deep learning: a systematic literature review
                        
                    
    
            Objective: Explore deep learning applications in predictive analytics for public health data, identify challenges and trends, and then understand the current landscape. Materials and Methods: A systematic literature review was conducted in June 2023 to search articles on public health data in the context of deep learning, published from the inception of medical and computer science databases through June 2023. The review focused on diverse datasets, abstracting applications, challenges, and advancements in deep learning. Results: 2004 articles were reviewed, identifying 14 disease categories. Observed trends include explainable-AI, patient embedding learning, and integrating different data sources and employing deep learning models in health informatics. Noted challenges were technical reproducibility and handling sensitive data. Discussion: There has been a notable surge in deep learning applications on public health data publications since 2015. Consistent deep learning applications and models continue to be applied across public health data. Despite the wide applications, a standard approach still does not exist for addressing the outstanding challenges and issues in this field. Conclusion: Guidelines are needed for applying deep learning and models in public health data to improve FAIRness, efficiency, transparency, comparability, and interoperability of research. Interdisciplinary collaboration among data scientists, public health experts, and policymakers is needed to harness the full potential of deep learning. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2401658
- PAR ID:
- 10600046
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- Health Informatics Journal
- Volume:
- 31
- Issue:
- 1
- ISSN:
- 1460-4582
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            IntroductionWhile vaccines are crucial for disease prevention, disparities in vaccination coverage persist among youths aged 10 to 29 years, including within the United States. Serious games are emerging as a new strategy to address vaccine hesitancy. This systematic review aimed to aggregate and assess the current evidence on game-based interventions to improve youth vaccination rates, evaluating their impact and identifying factors influencing their effectiveness. MethodsThis systematic review was conducted through a meticulous search and evaluation of literature from databases including PubMed, Cumulative Index to Nursing and Allied Health Literature database, ProQuest platform, Cochrane Library, and Google Scholar. Studies were included if they (a) were designed with the purpose of improving youth vaccination rates; (b) were published in English; (c) were published between January 2011 and June 2023; and (d) evaluated the effect of game-based interventions. Search terms included Medical Subject Headings terms and keywords of the eligible articles. ResultsOut of 269 studies, 11 were included in the final analysis of this review. The earliest study dated back to 2013, with 5 being randomized controlled trial and 6 studies incorporating theoretical models in their design or outcome measures. The findings indicated a generally positive effect of game-based interventions on vaccine-related knowledge. However, the impact on actual vaccine uptake was limited. In-game avatar customization and collaboration games were found as effective tools for player engagement. ConclusionThe review findings indicated that serious games boost vaccine knowledge but lack strong evidence for influencing youth vaccine uptake. More rigorous research and tailored game designs are needed to determine the effectiveness of game-based interventions and effectively address the diverse needs of youth in vaccine decision-making.more » « less
- 
            Elkins, Christopher A (Ed.)ABSTRACT Wastewater-based epidemiology (WBE) expanded rapidly in response to the COVID-19 pandemic. As the public health emergency has ended, researchers and practitioners are looking to shift the focus of existing wastewater surveillance programs to other targets, including bacteria. Bacterial targets may pose some unique challenges for WBE applications. To explore the current state of the field, the National Science Foundation-funded Research Coordination Network (RCN) on Wastewater Based Epidemiology for SARS-CoV-2 and Emerging Public Health Threats held a workshop in April 2023 to discuss the challenges and needs for wastewater bacterial surveillance. The targets and methods used in existing programs were diverse, with twelve different targets and nine different methods listed. Discussions during the workshop highlighted the challenges in adapting existing programs and identified research gaps in four key areas: choosing new targets, relating bacterial wastewater data to human disease incidence and prevalence, developing methods, and normalizing results. To help with these challenges and research gaps, the authors identified steps the larger community can take to improve bacteria wastewater surveillance. This includes developing data reporting standards and method optimization and validation for bacterial programs. Additionally, more work is needed to understand shedding patterns for potential bacterial targets to better relate wastewater data to human infections. Wastewater surveillance for bacteria can help provide insight into the underlying prevalence in communities, but much work is needed to establish these methods. IMPORTANCEWastewater surveillance was a useful tool to elucidate the burden and spread of SARS-CoV-2 during the pandemic. Public health officials and researchers are interested in expanding these surveillance programs to include bacterial targets, but many questions remain. The NSF-funded Research Coordination Network for Wastewater Surveillance of SARS-CoV-2 and Emerging Public Health Threats held a workshop to identify barriers and research gaps to implementing bacterial wastewater surveillance programs.more » « less
- 
            Abstract Neuropsychiatric disorders pose a high societal cost, but their treatment is hindered by lack of objective outcomes and fidelity metrics. AI technologies and specifically Natural Language Processing (NLP) have emerged as tools to study mental health interventions (MHI) at the level of their constituent conversations. However, NLP’s potential to address clinical and research challenges remains unclear. We therefore conducted a pre-registered systematic review of NLP-MHI studies using PRISMA guidelines (osf.io/s52jh) to evaluate their models, clinical applications, and to identify biases and gaps. Candidate studies (n = 19,756), including peer-reviewed AI conference manuscripts, were collected up to January 2023 through PubMed, PsycINFO, Scopus, Google Scholar, and ArXiv. A total of 102 articles were included to investigate their computational characteristics (NLP algorithms, audio features, machine learning pipelines, outcome metrics), clinical characteristics (clinical ground truths, study samples, clinical focus), and limitations. Results indicate a rapid growth of NLP MHI studies since 2019, characterized by increased sample sizes and use of large language models. Digital health platforms were the largest providers of MHI data. Ground truth for supervised learning models was based on clinician ratings (n = 31), patient self-report (n = 29) and annotations by raters (n = 26). Text-based features contributed more to model accuracy than audio markers. Patients’ clinical presentation (n = 34), response to intervention (n = 11), intervention monitoring (n = 20), providers’ characteristics (n = 12), relational dynamics (n = 14), and data preparation (n = 4) were commonly investigated clinical categories. Limitations of reviewed studies included lack of linguistic diversity, limited reproducibility, and population bias. A research framework is developed and validated (NLPxMHI) to assist computational and clinical researchers in addressing the remaining gaps in applying NLP to MHI, with the goal of improving clinical utility, data access, and fairness.more » « less
- 
            Abstract Traditional health surveillance methods play a critical role in public health safety but are limited by the data collection speed, coverage, and resource requirements. Wastewater‐based epidemiology (WBE) has emerged as a cost‐effective and rapid tool for detecting infectious diseases through sewage analysis of disease biomarkers. Recent advances in big data analytics have enhanced public health monitoring by enabling predictive modeling and early risk detection. This paper explores the application of machine learning (ML) in WBE data analytics, with a focus on infectious disease surveillance and forecasting. We highlight the advantages of ML‐driven WBE prediction models, including their ability to process multimodal data, predict disease trends, and evaluate policy impacts through scenario simulations. We also examine challenges such as data quality, model interpretability, and integration with existing public health infrastructure. The integration of ML WBE data analytics enables rapid health data collection, analysis, and interpretation that are not feasible in current surveillance approaches. By leveraging ML and WBE, decision makers can reduce cognitive biases and enhance data‐driven responses to public health threats. As global health risks evolve, the synergy between WBE, ML, and data‐driven decision‐making holds significant potential for improving public health outcomes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
