Wide-angle, broadband self-collimation (SC) is demonstrated in a hexagonal photonic crystal (PhC) fabricated in a low-refractive-index photopolymer by multiphoton lithography. The PhC can be described as a hexagonal array of cylindrical air holes in a block of dielectric material having a low-refractive index. Optical characterization shows that the device strongly self-collimates light at near-infrared wavelengths that span 1360 to 1610 nm. SC forces light to flow along the extrusion direction of the lattice without diffractive spreading, even when light couples into the device at high oblique angles. Numerical simulations corroborate the experimental findings.
more »
« less
Diffractive Synthesis of Multipole Interference States Using Low‐Index Mesoscale Dielectric Structures
The multipole interference (MPI) effect plays pivotal roles in the formation of electromagnetic responses in various settings. In the optics regime, it has been realized typically through the Mie resonance that necessitates high‐index, deep‐subwavelength‐scale dielectric resonators that are challenging to fabricate. Herein, a new, diffraction‐based MPI scheme that can be realized with low‐index, mesoscale dielectric structures is demonstrated. It is verified that this “diffractive MPI” concept by realizing various MPI states using micrometric polymeric cuboids fabricated by soft‐lithography. Subsequent analyses reveal that the MPI states with a distinct near‐zero forward scattering (NZFS) characteristic played crucial roles in shaping the cuboid's transmission spectrum. A hitherto unreported NZFS state, which exhibits a unique, “trifolium” radiation pattern, is also identified. The spectral position of such NZFS states turns out to be strongly dependent on the cuboid's geometry. By combining these results, the diffractive NZFS formation is related to the important phenomena of induced transparency and structural color generation.
more »
« less
- Award ID(s):
- 2129796
- PAR ID:
- 10600269
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Photonics Research
- Volume:
- 6
- Issue:
- 6
- ISSN:
- 2699-9293
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper describes how two-dimensional plasmonic nanoparticle latticescovered with microscale arrays of dielectric patches can show superlattice surface latticeresonances (SLRs). These optical resonances originate from multiscale diffractive coupling thatcan be controlled by the periodicity and size of the patterned dielectrics. The features in theoptical dispersion diagram are similar to those of index-matched microscale arrays of metalnanoparticle lattices, having the same lateral dimensions as the dielectric patches. With anincrease in nanoparticle size, superlattice SLRs can also support quadrupole excitations withdistinct dispersion diagrams. The tunable optical band structure enabled by patterned dielectricson plasmonic nanoparticle arrays offers prospects for enhanced nonlinear optics, nanoscalelasing, and engineered parity-time symmetries.more » « less
-
Abstract Multilevel diffractive lenses (MDLs) have emerged as an alternative to both conventional diffractive optical elements (DOEs) and metalenses for applications ranging from imaging to holographic and immersive displays. Recent work has shown that by harnessing structural parametric optimization of DOEs, one can design MDLs to enable multiple functionalities like achromaticity, depth of focus, wide-angle imaging, etc. with great ease in fabrication. Therefore, it becomes critical to understand how fabrication errors still do affect the performance of MDLs and numerically evaluate the trade-off between efficiency and initial parameter selection, right at the onset of designing an MDL, i.e., even before putting it into fabrication. Here, we perform a statistical simulation-based study on MDLs (primarily operating in the THz regime) to analyse the impact of various fabrication imperfections (single and multiple) on the final structure as a function of the number of ring height levels. Furthermore, we also evaluate the performance of these same MDLs with the change in the refractive index of the constitutive material. We use focusing efficiency as the evaluation criterion in our numerical analysis; since it is the most fundamental property that can be used to compare and assess the performance of lenses (and MDLs) in general designed for any application with any specific functionality.more » « less
-
Obtaining large field enhancement in low-refractive-index dielectric materials is highly relevant to many photonic and quantum optics applications. However, confining light in these materials is challenging, owing to light leakage through coupling to continuum modes in the surrounding environment. We investigate the possibility of achieving high quality factors in low-index dielectric resonators through the bound states in the continuum (BIC). Our simulations demonstrate that destructive interference between leaky modes can be achieved by tuning the geometrical parameters of the resonator arrays, leading to the emergence of quasi-BIC in resonators that have a small index contrast to the underlying substrates. The resultant large field enhancement gives rise to giant quality factors and Purcell effects. By introducing vertical mirror symmetry, the quasi-BIC can be tuned into an ideal BIC. In addition, the quasi-BIC can modify the emission patterns of the coupled emitters, rendering highly directional and focused far-field emission. These findings may provide a path for the practical implementation of photonic and quantum devices based on low-index dielectric materials.more » « less
-
Multilayer diffractive optical neural networks (DONNs) can perform machine learning (ML) tasks at the speed of light with low energy consumption. Decreasing the number of diffractive layers can reduce inevitable material and diffraction losses to improve system performance, and incorporating compact devices can reduce the system footprint. However, current analytical DONN models cannot accurately describe such physical systems. Here we show the ever-ignored effects of interlayer reflection and interpixel interaction on the deployment performance of DONNs through full-wave electromagnetic simulations and terahertz (THz) experiments. We demonstrate that the drop of handwritten digit classification accuracy due to reflection is negligible with conventional low-index THz polymer materials, while it can be substantial with high-index materials. We further show that one- and few-layer DONN systems can achieve high classification accuracy, but there is a trade-off between accuracy and model-system matching rate because of the fast-varying spatial distribution of optical responses in diffractive masks. Deep DONNs can break down such a trade-off because of reduced mask spatial complexity. Our results suggest that new accurate and trainable DONN models are needed to advance the development and deployment of compact DONN systems for sophisticated ML tasks.more » « less
An official website of the United States government
