skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 13, 2026

Title: Exploring students’ interest-driven patterns of scientific observation in Minecraft
Students bring different levels of interest to learning experiences, which impacts how they engage with learning materials. This study aims to understand the relationship between student's interest levels and their scientific observation behaviors within a Minecraft-based learning system. Motivated by the growing interest in integrating human-AI collaboration within educational research, we combine the capabilities of Large Language Models (LLMs) with the expertise of human researchers to capture the emerging themes within students’ observations. Using epistemic network analysis, we then visualized and compared the observational patterns of students with high and low situational interest. Our findings indicate that students with higher situational interest tend to make observations across a broader range of topics, with a particular emphasis on scientific content. These results highlight the potential for developing timely interventions to support students with low situational interest.  more » « less
Award ID(s):
2301172
PAR ID:
10600284
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
The International Society of the Learning Sciences
Date Published:
Journal Name:
Proceedings
ISSN:
3079-9929
ISBN:
979-8-9906980-2-4
Format(s):
Medium: X
Location:
Helsinki, Finland
Sponsoring Org:
National Science Foundation
More Like this
  1. SITE (Ed.)
    Persons with learning disabilities (LD) are underrepresented in computer science and information technology fields despite the explosion of related career opportunities and interest. In this study, we examine the use of pair programming as a collaborative intervention in with computer programming and compare students with learning disabilities to students who do not have learning disabilities. We concentrate on situational motivation constructs which tap into the desire to meet goals and acquire skills. We find that students with LD and similar students without LD fare the same. For the both groups, three of the four situational motivation subscales increase after the introduction of pair programming. The use of pair programming holds promise as an educational intervention for all students including those with learning disabilities. 
    more » « less
  2. Self-regulated learning conducted through metacognitive monitoring and scientific inquiry can be influenced by many factors, such as emotions and motivation, and are necessary skills needed to engage in efficient hypothesis testing during game-based learning. Although many studies have investigated metacognitive monitoring and scientific inquiry skills during game-based learning, few studies have investigated how the sequence of behaviors involved during hypothesis testing with game-based learning differ based on both efficiency level and emotions during gameplay. For this study, we analyzed 59 undergraduate students’ (59% female) metacognitive monitoring and hypothesis testing behavior during learning and gameplay with CRYSTAL ISLAND, a game-based learning environment that teaches students about microbiology. Specifically, we used sequential pattern mining and differential sequence mining to determine if there were sequences of hypothesis testing behaviors and to determine if the frequencies of occurrence of these sequences differed between high or low levels of efficiency at finishing the game and high or low levels of facial expressions of emotions during gameplay. Results revealed that students with low levels of efficiency and high levels of facial expressions of emotions had the most sequences of testing behaviors overall, specifically engaging in more sequences that were indicative of less strategic hypothesis testing behavior than the other students, where students who were more efficient with both levels of emotions demonstrated strategic testing behavior. These results have implications for the strengths of using educational data mining techniques for determining the processes underlying patterns of engaging in self-regulated learning conducted through hypothesis testing as they unfold over time; for training students on how to engage in the self-regulation, scientific inquiry, and emotion regulation processes that can result in efficient gameplay; and for developing adaptive game-based learning environments that foster effective and efficient self-regulation and scientific inquiry during learning. 
    more » « less
  3. de Vries, E. (Ed.)
    Historically, learning for young students has occurred in formal, in-person classroom environments. But in just a matter of weeks, children were mandated to transition to a completely new mode of learning, facing new learning challenges with heightened anxieties. To this end, we aim to better understand how our learning experience design (LXD) efforts support or hinder children’s engagement while participating in an online, video-based math course. This study operationalized LXD through the integration of e-learning instructional design (ID) as a lever for promoting students’ situational interest (SI), emphasis on human-centered design to support students’ user experience (UX), and the combination of SI and UX to foster student engagement in an online environment. Results provide practical implications for how we can intentionally iterate our designs to sustain children’s online engagement as we prepare for future instances of traditional, online and even hybrid models of instruction. 
    more » « less
  4. Triggered situational interest in introductory courses can encourage student engagement, motivation, and value for the geosciences. In-person labs have traditionally played a unique role in triggering situational interest compared to lectures, but the COVID transition online disrupted these dynamics. We examine students’ self-reported situational interest from 6,463 responses to weekly surveys in online introductory geoscience lab courses at five U.S. institutions during fall 2020 and spring 2021. Approximately half of students reported that labs were equally (49.4%) or more interesting (4.3%) online, compared to a hypothetical in-person option. Analysis showed a statistically-significant interaction between student situational interest and the combined effect of 1) the course the students were enrolled in and 2) the topic of the lab session (F (20, 6395) = 4.038, p < 0.001). However, topic and course together explain only about 4% of the variance in the dataset, indicating that other factors have a large role in triggering interest. Students who indicated that labs were less interesting online (46.3%) most often cited not being able to physically interact with instructional materials (56.3%) and difficulty interacting with peers (30.6%). When asked what revisions would increase their situational interest, additional hands-on interaction (22.8%) and increased relevance to their life or future career (20.2%) were the answer choices students selected most frequently. These findings identify modifications and enhancements grounded in students’ self-reported interest that can inform the design of online introductory geology labs. 
    more » « less
  5. Abstract Background Instructors can teach evolution using any number of species contexts. However, not all species contexts are equal, and taxa choice can alter both cognitive and affective elements of learning. This is particularly true when teaching evolution using human examples, a promising method for evolution instruction that nevertheless comes with unique challenges. In this study, we tested how an evolution lesson focused on a human example may impact students’ engagement, perceived content relevance, learning gains, and level of discomfort, when compared to the same lesson using a non-human mammal example. We use this isomorphic lesson and a pre-post study design administered in a split-section introductory biology classroom to isolate the importance of the species context. Results For two of the four measurements of interest, the effect of using human examples could not be understood without accounting for student background. For learning gains, students with greater pre-class content knowledge benefited more from the human examples, while those with low levels of knowledge benefited from the non-human example. For perceived relevance, students who were more accepting of human evolution indicated greater content relevance from the human example. Regardless of condition, students with lower evolution acceptance reported greater levels of discomfort with the lesson. Conclusions Our results illustrate the complexities of using human examples to teach evolution. While these examples were beneficial for many students, they resulted in worse outcomes for students that were less accepting of evolution and those who entered the course with less content knowledge. These findings demonstrate the need to consider diverse student backgrounds when establishing best practices for using human examples to teach evolution. 
    more » « less