skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 5, 2026

Title: Bounding nonminimality and a conjecture of Borovik–Cherlin
Motivated by the search for methods to establish strong minimality of certain low order algebraic differential equations, a measure of how far a finite rank stationary type is from being minimal is introduced and studied: Thedegree of nonminimalityis the minimum number of realisations of the type required to witness a nonalgebraic forking extension. Conditional on the truth of a conjecture of Borovik and Cherlin on the generic multiple-transitivity of homogeneous spaces definable in the stable theory being considered, it is shown that the nonminimality degree is bounded by theU-rank plus 2. The Borovik–Cherlin conjecture itself is verified for algebraic and meromorphic group actions, and a bound ofU-rank plus 1 is then deduced unconditionally for differentially closed fields and compact complex manifolds. An application is given regarding transcendence of solutions to algebraic differential equations.  more » « less
Award ID(s):
1945251
PAR ID:
10600295
Author(s) / Creator(s):
;
Publisher / Repository:
EMS Press
Date Published:
Journal Name:
Journal of the European Mathematical Society
Volume:
27
Issue:
2
ISSN:
1435-9855
Page Range / eLocation ID:
589 to 613
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Given a multigraph$$G=(V,E)$$, the edge-coloring problem (ECP) is to color the edges ofGwith the minimum number of colors so that no two adjacent edges have the same color. This problem can be naturally formulated as an integer program, and its linear programming relaxation is referred to as the fractional edge-coloring problem (FECP). The optimal value of ECP (resp. FECP) is called the chromatic index (resp. fractional chromatic index) ofG, denoted by$$\chi '(G)$$(resp.$$\chi ^*(G)$$). Let$$\Delta (G)$$be the maximum degree ofGand let$$\Gamma (G)$$be the density ofG, defined by$$\begin{aligned} \Gamma (G)=\max \left\{ \frac{2|E(U)|}{|U|-1}:\,\, U \subseteq V, \,\, |U|\ge 3 \hspace{5.69054pt}\textrm{and} \hspace{5.69054pt}\textrm{odd} \right\} , \end{aligned}$$whereE(U) is the set of all edges ofGwith both ends inU. Clearly,$$\max \{\Delta (G), \, \lceil \Gamma (G) \rceil \}$$is a lower bound for$$\chi '(G)$$. As shown by Seymour,$$\chi ^*(G)=\max \{\Delta (G), \, \Gamma (G)\}$$. In the early 1970s Goldberg and Seymour independently conjectured that$$\chi '(G) \le \max \{\Delta (G)+1, \, \lceil \Gamma (G) \rceil \}$$. Over the past five decades this conjecture, a cornerstone in modern edge-coloring, has been a subject of extensive research, and has stimulated an important body of work. In this paper we present a proof of this conjecture. Our result implies that, first, there are only two possible values for$$\chi '(G)$$, so an analogue to Vizing’s theorem on edge-colorings of simple graphs holds for multigraphs; second, although it isNP-hard in general to determine$$\chi '(G)$$, we can approximate it within one of its true value, and find it exactly in polynomial time when$$\Gamma (G)>\Delta (G)$$; third, every multigraphGsatisfies$$\chi '(G)-\chi ^*(G) \le 1$$, and thus FECP has a fascinating integer rounding property. 
    more » « less
  2. Abstract Let$$M_{\langle \mathbf {u},\mathbf {v},\mathbf {w}\rangle }\in \mathbb C^{\mathbf {u}\mathbf {v}}{\mathord { \otimes } } \mathbb C^{\mathbf {v}\mathbf {w}}{\mathord { \otimes } } \mathbb C^{\mathbf {w}\mathbf {u}}$$denote the matrix multiplication tensor (and write$$M_{\langle \mathbf {n} \rangle }=M_{\langle \mathbf {n},\mathbf {n},\mathbf {n}\rangle }$$), and let$$\operatorname {det}_3\in (\mathbb C^9)^{{\mathord { \otimes } } 3}$$denote the determinant polynomial considered as a tensor. For a tensorT, let$$\underline {\mathbf {R}}(T)$$denote its border rank. We (i) give the first hand-checkable algebraic proof that$$\underline {\mathbf {R}}(M_{\langle 2\rangle })=7$$, (ii) prove$$\underline {\mathbf {R}}(M_{\langle 223\rangle })=10$$and$$\underline {\mathbf {R}}(M_{\langle 233\rangle })=14$$, where previously the only nontrivial matrix multiplication tensor whose border rank had been determined was$$M_{\langle 2\rangle }$$, (iii) prove$$\underline {\mathbf {R}}( M_{\langle 3\rangle })\geq 17$$, (iv) prove$$\underline {\mathbf {R}}(\operatorname {det}_3)=17$$, improving the previous lower bound of$$12$$, (v) prove$$\underline {\mathbf {R}}(M_{\langle 2\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+1.32\mathbf {n}$$for all$$\mathbf {n}\geq 25$$, where previously only$$\underline {\mathbf {R}}(M_{\langle 2\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+1$$was known, as well as lower bounds for$$4\leq \mathbf {n}\leq 25$$, and (vi) prove$$\underline {\mathbf {R}}(M_{\langle 3\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+1.6\mathbf {n}$$for all$$\mathbf {n} \ge 18$$, where previously only$$\underline {\mathbf {R}}(M_{\langle 3\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+2$$was known. The last two results are significant for two reasons: (i) they are essentially the first nontrivial lower bounds for tensors in an “unbalanced” ambient space and (ii) they demonstrate that the methods we use (border apolarity) may be applied to sequences of tensors. The methods used to obtain the results are new and “nonnatural” in the sense of Razborov and Rudich, in that the results are obtained via an algorithm that cannot be effectively applied to generic tensors. We utilize a new technique, calledborder apolaritydeveloped by Buczyńska and Buczyński in the general context of toric varieties. We apply this technique to develop an algorithm that, given a tensorTand an integerr, in a finite number of steps, either outputs that there is no border rankrdecomposition forTor produces a list of all normalized ideals which could potentially result from a border rank decomposition. The algorithm is effectively implementable whenThas a large symmetry group, in which case it outputs potential decompositions in a natural normal form. The algorithm is based on algebraic geometry and representation theory. 
    more » « less
  3. A<sc>bstract</sc> The Seiberg-Witten solution to four-dimensional$$ \mathcal{N} $$ N = 2 super-Yang-Mills theory with gauge group SU(N) and without hypermultiplets is used to investigate the neighborhood of the maximal Argyres-Douglas points of type$$ \left({\mathfrak{a}}_1,{\mathfrak{a}}_{N-1}\right) $$ a 1 a N 1 . A convergent series expansion for the Seiberg-Witten periods near the Argyres-Douglas points is obtained by analytic continuation of the series expansion around theℤ2Nsymmetric point derived in arXiv:2208.11502. Along with direct integration of the Picard-Fuchs equations for the periods, the expansion is used to determine the location of the walls of marginal stability for SU(3). The intrinsic periods and Kähler potential of the$$ \left({\mathfrak{a}}_1,{\mathfrak{a}}_{N-1}\right) $$ a 1 a N 1 superconformal fixed point are computed by letting the strong coupling scale tend to infinity. We conjecture that the resulting intrinsic Kähler potential is positive definite and convex, with a unique minimum at the Argyres-Douglas point, provided only intrinsic Coulomb branch operators with unitary scaling dimensions ∆>1 acquire a vacuum expectation value, and provide both analytical and numerical evidence in support of this conjecture. In all the low rank examples considered here, it is found that turning on moduli dual to ∆ ≤ 1 operators spoils the positivity and convexity of the intrinsic Kähler potential. 
    more » « less
  4. We study regularity of solutions u u to ∂<#comment/> ¯<#comment/> u = f \overline \partial u=f on a relatively compact C 2 C^2 domain D D in a complex manifold of dimension n n , where f f is a ( 0 , q ) (0,q) form. Assume that there are either ( q + 1 ) (q+1) negative or ( n −<#comment/> q ) (n-q) positive Levi eigenvalues at each point of boundary ∂<#comment/> D \partial D . Under the necessary condition that a locally L 2 L^2 solution exists on the domain, we show the existence of the solutions on the closure of the domain that gain 1 / 2 1/2 derivative when q = 1 q=1 and f f is in the Hölder–Zygmund space Λ<#comment/> r ( D ) \Lambda ^r( D) with r > 1 r>1 . For q > 1 q>1 , the same regularity for the solutions is achieved when ∂<#comment/> D \partial D is either sufficiently smooth or of ( n −<#comment/> q ) (n-q) positive Levi eigenvalues everywhere on ∂<#comment/> D \partial D
    more » « less
  5. Abstract We discuss various applications of a uniform vanishing result for the graded components of the finite length Koszul module associated to a subspace$$K\subseteq \bigwedge ^2 V$$ K 2 V , whereVis a vector space. Previously Koszul modules of finite length have been used to give a proof of Green’s Conjecture on syzygies of generic canonical curves. We now give applications to effective stabilization of cohomology of thickenings of algebraic varieties, divisors on moduli spaces of curves, enumerative geometry of curves onK3 surfaces and to skew-symmetric degeneracy loci. We also show that the instability of sufficiently positive rank 2 vector bundles on curves is governed by resonance and give a splitting criterion. 
    more » « less