skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 19, 2026

Title: Physical scaling for predicting shear viscosity and memory effects of lithium-ion battery cathode slurries
Lithium-ion battery cathodes are manufactured by coating slurries, liquid suspensions that typically include carbon black (CB), active material, and polymer binder. These slurries have a yield stress and complex rheology due to CB’s microstructural response to flow. While optimizing the formulation and processing of slurries is critical to manufacturing defect-free and high-performance cathodes, engineering the shear rheology of cathode slurries remains challenging. In this study, we conducted simultaneous rheo-electric measurements on 3 wt% CB suspensions in N-methyl-2-pyrrolidone containing various loadings of active material NMC811 and polyvinylidene difluoride. Accounting for the changes in the infinite shear viscosity, the yield stress, and the medium viscosity due to the presence of NMC and polymers, we defined the differential relative viscosity. This differential relative viscosity, Ξ”πœ‚π‘Ÿ, is a measure of the distance from the infinite shear rate, where carbon black agglomerates are fully broken down. We find that Ξ”πœ‚π‘Ÿ collapses all flow curves regardless of formulation with an empirical relationship Ξ”πœ‚π‘Ÿ=2.18π‘€π‘›π‘“βˆ’0.92, indicating a quantitative prediction of the flow curve of cathode slurries across a wide range of formulation space. We then used electrical conductivity to identify and quantify shear-induced structure memory, evidenced in the ratio of the shear conductivity over the post-shear quiescent conductivity. We find that similar to the changes in the yield stress, increasing NMC concentration increases memory retention, and in contrast, the addition of PVDF erases memory effects. Our findings here will provide valuable insight into engineering the formulation and processing conditions of lithium-ion battery cathodes.  more » « less
Award ID(s):
2047365
PAR ID:
10600305
Author(s) / Creator(s):
; ;
Publisher / Repository:
Royal Society of Chemistry (RSC)
Date Published:
Journal Name:
Soft Matter
Volume:
21
Issue:
8
ISSN:
1744-683X
Page Range / eLocation ID:
1489 to 1497
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lithium-ion battery cathode slurries have a microstructure that depends sensitively on how they are processed due to carbon black's (CB) evolving structure when subjected coating flows. While polyvinylidene difluoride (PVDF), one of the main components of the cathode slurry, plays an important role in modifying the structure and rheology of CB, a quantitative understanding is lacking. In this work, we explore the role of PVDF in determining the structural evolution of Super C65 CB in N-methyl-2-pyrrolidinone (NMP) with rheo-electric measurements. We find that PVDF enhances the viscosity of NMP resulting in a more extensive structural erosion of CB agglomerates with increasing polymer concentration and molecular weight. We also show that the relative viscosity of all suspensions can be collapsed by the fluid Mason number (Mnf), which compares the hydrodynamic forces imposed by the medium to cohesive forces holding CB agglomerates together. Using simultaneous rheo-electric measurements, we find at high Mnf, the dielectric strength (ΔΡ) scales with Mnf, and the power-law scaling can be quantitatively predicted by considering the self-similar break up of CB agglomerates. The collapse of the relative viscosity and scaling of ΔΡ both suggest that PVDF increases the hydrodynamic force of the suspending medium without directly changing the CB agglomerate structure. These findings are valuable for optimizing the rheology of lithium ion battery cathode slurries. We also anticipate that these findings can be extended to understand the microstructure of similar systems under flow. 
    more » « less
  2. The viscosity and microstructure of Li-ion battery slurries and the performance of the resulting electrodes have been shown to depend on the mixing protocol. This work applies rheology to understand the impact of shear during mixing and polymer molecular weight on slurry microstructure and electrode performance. Mixing protocols of different shear intensity are applied to slurries of LiNi0.33Mn0.33Co0.33O2 (NMC), carbon black (CB), and polyvinyldiene difluoride (PVDF) in N-methyl-2-pyrrolidinone (NMP), using both high-molecular-weight (HMW) and low-molecular-weight (LMW) PVDF. Slurries of both polymers are observed to form colloidal gels under high-shear mixing, even though unfavorable interactions between high molecular weight PVDF and CB should prevent this microstructure from forming. Theoretical analysis and experimental results show that increasing shear rate during the polymer and particle mixing steps causes polymer scission to decrease the polymer molecular weight and allow colloidal gelation. In general, electrodes made from high molecular weight PVDF generally show increased rate capability. However, high shear rates lead to increased cell variability, possibly due to the heterogeneities introduced by polymer scission. 
    more » « less
  3. Debris flows are dense and fast-moving complex suspensions of soil and water that threaten lives and infrastructure. Assessing the hazard potential of debris flows requires predicting yield and flow behavior. Reported measurements of rheology for debris flow slurries are highly variable and sometimes contradictory due to heterogeneity in particle composition and volume fraction ( Ο• ) and also inconsistent measurement methods. Here we examine the composition and flow behavior of source materials that formed the postwildfire debris flows in Montecito, CA, in 2018, for a wide range of Ο• that encapsulates debris flow formation by overland flow. We find that shear viscosity and yield stress are controlled by the distance from jamming, Ξ” Ο• = Ο• m βˆ’ Ο• , where the jamming fraction Ο• m is a material parameter that depends on grain size polydispersity and friction. By rescaling shear and viscous stresses to account for these effects, the data collapse onto a simple nondimensional flow curve indicative of a Bingham plastic (viscoplastic) fluid. Given the highly nonlinear dependence of rheology on Ξ” Ο• , our findings suggest that determining the jamming fraction for natural materials will significantly improve flow models for geophysical suspensions such as hyperconcentrated flows and debris flows. 
    more » « less
  4. Cathodes of lithium-ion batteries (LIBs) significantly impact the environmental footprint, cost, and energy performance of the battery-pack. Hence, sustainable production of Li-ion battery cathodes is critically required for ensuring cost-effectiveness, environmental benignity, consumer friendliness, and social justice. Battery chemistry largely determines individual cell performance as well as the battery pack cost and life cycle greenhouse gas emission. Continuous manufacturing platforms improve production efficiency in terms of product yield, quality and cost. Spent-battery recycling ensures the circular economy of critical elements that are required for cathode production. Innovations in fast-charging LIBs are particularly promising for sustainable e-mobility with a reduced carbon footprint. This article provides an overview of these research directions, emphasizing strategies for low-cobalt cathode development, recycling processes, continuous production and improvement in fast-charging capability. 
    more » « less
  5. Electron transport in complex fluids, biology, and soft matter is a valuable characteristic in processes ranging from redox reactions to electrochemical energy storage. These processes often employ conductor–insulator composites in which electron transport properties are fundamentally linked to the microstructure and dynamics of the conductive phase. While microstructure and dynamics are well recognized as key determinants of the electrical properties, a unified description of their effect has yet to be determined, especially under flowing conditions. In this work, the conductivity and shear viscosity are measured for conductive colloidal suspensions to build a unified description by exploiting both recent quantification of the effect of flow-induced dynamics on electron transport and well-established relationships between electrical properties, microstructure, and flow. These model suspensions consist of conductive carbon black (CB) particles dispersed in fluids of varying viscosities and dielectric constants. In a stable, well-characterized shear rate regime where all suspensions undergo self-similar agglomerate breakup, competing relationships between conductivity and shear rate were observed. To account for the role of variable agglomerate size, equivalent microstructural states were identified using a dimensionless fluid Mason number, Mn f , which allowed for isolation of the role of dynamics on the flow-induced electron transport rate. At equivalent microstructural states, shear-enhanced particle–particle collisions are found to dominate the electron transport rate. This work rationalizes seemingly contradictory experimental observations in literature concerning the shear-dependent electrical properties of CB suspensions and can be extended to other flowing composite systems. 
    more » « less