skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 13, 2026

Title: Individual Tree and Sapling Aboveground Biomass (AGB) Estimates for 35 NEON Terrestrial Observation Sites for 2014–2023
Abstract Here we present aboveground biomass (AGB) estimates from individual tree diameters scaled to whole‐tree biomass estimates using generalized allometric equations for 35 National Ecological Observatory Network (NEON) sites within the United States and Puerto Rico. These data are in both a standalone data file made publicly available via Figshare and as an R data package (NEONForestAGB) that allows for direct import of data into the R statistical computing environment. AGB is an Essential Climate Variable (ECV), yet biomass estimation from large forest inventory data can be cumbersome. Here we seek to provide a useful data set for community use from NEON data. The data set includes 92,281 unique individuals of 478 different species from 1,216 terrestrial observation plots for 360,570 biomass estimates between the years 2014 and 2023.  more » « less
Award ID(s):
2217817
PAR ID:
10600473
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
130
Issue:
6
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The global forest carbon stocks represent the amount of carbon stored in woody vegetation and are important for quantifying the ability of the global forests to sequester atmospheric CO2and to provide ecosystem services (e.g., timber) under climate change. The forest ecosystem carbon pool estimates are highly variable and poorly quantified in areas lacking forest inventory estimates. Here, we compare and analyze aboveground biomass (AGB) estimates from five satellite‐based global data sets and nine dynamic global vegetation models (DVGMs). We find that across the data sets, mean AGB exhibits the largest variability around the tropical area. In addition, AGB shows a similar latitudinal trend but large variability among the data sets. Satellite‐based AGB estimates are lower than those simulated by DVGMs. The divergence among the satellite‐based AGB estimates can be driven by the methodology, input satellite products, and the forested areas used to estimate AGB. The modeled NPP, autotrophic respiration, and carbon allocation mostly drive the variability of AGB simulated by DGVMs. The future availability of a high‐quality global forest area map is anticipated to improve AGB estimate accuracy and to reduce the discrepancies among different satellite‐ and model‐based AGB estimates. We suggest the carbon‐modeling community reexamine the methodology used to estimate AGB and forested areas for a more robust global forest carbon stock estimation. 
    more » « less
  2. Abstract Grassy ecosystems cover >25% of the world's land surface area. The abundance of herbaceous vegetation in these systems directly impacts a variety of ecological processes, including carbon sequestration, regulation of water and nutrient cycling, and support of grazing wildlife and livestock. Efforts to quantify herbaceous biomass, however, are often limited by a trade‐off between accuracy and spatial scale. Here, we describe a method for using Light Detection and Ranging (LiDAR) to estimate continuous aboveground biomass (AGB) at sub‐meter resolutions over large (10–10 000 ha) spatial scales. Across two African savanna ecosystems, we compared field‐ and LiDAR‐derived structural metrics—including measures of vegetation height and volume—with destructively harvested AGB by aligning our geospatial data with the location of harvested quadrats. Using this combination of approaches, we develop scaling equations to estimate spatially continuous herbaceous AGB over large areas. We demonstrate the utility of this method using a long‐term, large herbivore exclosure experiment as a case study and comprehensively compare common field‐ and LiDAR‐derived metrics for estimating herbaceous AGB. Our results indicate that UAV‐borne LiDAR provides comparable accuracy to standard field methods but over considerably larger areas. Nearly every measure of vegetation structure we quantified using LiDAR provided estimates of AGB that were comparable in accuracy (R2 > 0.6) to the suite of common field methods we evaluated. However, marked differences between our two sites indicate that, for applications where accurate estimation of absolute biomass is a priority, site‐specific parameterization with destructive harvesting is necessary regardless of methodology. With the increasing availability of high‐resolution remote sensing data globally, our results indicate that many measures of herbaceous vegetation structure can be used to accurately compare AGB, even in the absence of complementary field data. 
    more » « less
  3. Improving our ability to understand and predict the dynamics of the terrestrial carbon cycle remains a pressing challenge despite a rapidly growing volume and diversity of Earth Observation data. State data assimilation represents a path forward via an iterative cycle of making process-based forecasts and then statistically reconciling these forecasts against numerous ground-based and remotely-sensed data constraints into a “reanalysis” data product that provides full spatiotemporal carbon budgets with robust uncertainty accounting. Here we report on an >100x expansion of the PEcAn+SIPNET reanalysis from 500 sites CONUS, 25 ensemble members, and 2 data constraints to 6400 sites across North America, 100 ensemble members, and 5 data constraints: GEDI and Landtrendr AGB, MODIS LAI, SoilGrids Soil C, and SMAP soil moisture. We also report on an ensemble-based machine learning (ML) downscaling to a 1km product that preserves spatial, temporal, and across-variable covariances and demonstrate the impacts of these covariances on uncertainty accounting (Fig. 1). Synergistically, we use the same ML models to assess what climate, vegetation, and soil variables explain the spatiotemporal variability in different C pools and fluxes. In addition, we review a wide range of ongoing validation activities, comparing the outputs of the reanalysis against withheld data from: Ameriflux and NEON NEE and LE; USFS Forest Inventory biomass, biomass increment, tree rings, soil C, and litter; and NEON soil C and soil respiration. Finally, we touch on ML analyses to diagnose and correct systematic biases and emulator-based recalibration efforts. 
    more » « less
  4. Abstract Pinus edulis Engelm. is a short-stature, drought-tolerant tree species that is abundant in piñon-juniper woodlands throughout semiarid ecosystems of the American Southwest. P. edulis is a model species among ecophysiological disciplines, with considerable research focus given to hydraulic functioning and carbon partitioning relating to mechanisms of tree mortality. Many ecological studies require robust estimates of tree structural traits such as biomass, active sapwood area, and leaf area. We harvested twenty trees from Central New Mexico ranging in size from 1.3 to 22.7 cm root crown diameter (RCD) to derive allometric relationships from measurements of RCD, maximum height, canopy area (CA), aboveground biomass (AGB), sapwood area (AS), and leaf area (AL). Total foliar mass was measured from a subset of individuals and scaled to AL from estimates of leaf mass per area. We report a strong nonlinear relationship to AGB as a function of both RCD and height, whereas CA scaled linearly. Total AS expressed a power relationship with RCD. Both AS and CA exhibited strong linear relationships with AL (R2 = 0.99), whereas RCD increased nonlinearly with AL. We improve on current models by expanding the size range of sampled trees and supplement the existing literature for this species. Study Implications: Land managers need to better understand carbon and water dynamics in changing ecosystems to understand how those ecosystems can be sustainably used now and in the future. This study of two-needle pinon (Pinus edulis Engelm.) trees in New Mexico, USA, uses observations from unoccupied aerial vehicles, field measurements, and harvesting followed by laboratory analysis to develop allometric models for this widespread species. These models can be used to understand plant traits such biomass partitioning and sap flow, which in turn will help scientists and land managers better understand the ecosystem services provided by pinon pine across North America. 
    more » « less
  5. The National Ecological Observatory Network (NEON) is a long-term monitoring program at the continental scale designed to understand and forecast ecological responses to environmental change at local to broad scales. However, despite robust and nearly continuous collections, NEON mosquito data have been underused in downstream analyses. Here, we provide species-level estimated abundances for nighttime collected female mosquitoes derived from the mosquitoes sampled from CO2 traps (DP1.10043.001) (RELEASE-2024; NEON, 2024). By including zero counts, our derived data complement existing data sets and provide an analysis-ready time series useful for investigating mosquito phenology, abundances, and diversity at the species or community level. We also outline a set of considerations specific to filtering NEON mosquito data by sex and for day or nighttime collections, highlighting factors that could introduce uncertainty to abundance estimates. Along with the data set, we provide an R Markdown file that includes annotated code and documents our data filtering and QC/QA steps, as well as data files used to filter the mosquito data based on QC/QA criteria. All files are freely available for download through the Environmental Data Initiative data portal. Our reproducible and fully documented workflow can be easily adapted for specific needs or other NEON surveillance data. Our work aims to enhance the accessibility and use of NEON’s rich, long-term monitoring data. 
    more » « less