Abstract Acoustic recordings of soundscapes are an important category of audio data that can be useful for answering a variety of questions, and an entire discipline within ecology, dubbed “soundscape ecology,” has risen to study them. Bird sound is often the focus of studies of soundscapes due to the ubiquitousness of birds in most terrestrial environments and their high vocal activity. Autonomous acoustic recorders have increased the quantity and availability of recordings of natural soundscapes while mitigating the impact of human observers on community behavior. However, such recordings are of little use without analysis of the sounds they contain. Manual analysis currently stands as the best means of processing this form of data for use in certain applications within soundscape ecology, but it is a laborious task, sometimes requiring many hours of human review to process comparatively few hours of recording. For this reason, few annotated data sets of soundscape recordings are publicly available. Further still, there are no publicly available strongly labeled soundscape recordings of bird sounds that contain information on timing, frequency, and species. Therefore, we present the first data set of strongly labeled bird sound soundscape recordings under free use license. These data were collected in the Northeastern United States at Powdermill Nature Reserve, Rector, Pennsylvania, USA. Recordings encompass 385 minutes of dawn chorus recordings collected by autonomous acoustic recorders between the months of April through July 2018. Recordings were collected in continuous bouts on four days during the study period and contain 48 species and 16,052 annotations. Applications of this data set may be numerous and include the training, validation, and testing of certain advanced machine‐learning models that detect or classify bird sounds. There are no copyright or propriety restrictions; please cite this paper when using materials within.
more »
« less
This content will become publicly available on January 1, 2026
Overview of the Atlantic Deepwater Ecosystem Observatory Network
The Atlantic Deepwater Ecosystem Observatory Network (ADEON) along the US Mid- and South Atlantic Outer Continental Shelf (OCS) collected multiple years of measurements that describe the ecology and soundscape of the OCS. Ocean processes, marine life dynamics, and human use of the ocean are each three dimensional and time dependent, and occur at many spatial and temporal scales. Because no single measurement system (in situ or remote) is sufficient for describing dynamic ocean variables, the approach taken by ADEON was to integrate ocean measurements and models. Acoustic information was combined with contextual data from space-based remote sensing, hydrographic sensors, and mobile platforms in order to fully comprehend how human, biologic, and natural abiotic components create the OCS soundscape and influence its ecosystem dynamics. Standardized methodologies were developed for comparing soundscapes across regions and for generating predictive models of the soundscape and overall ecology of the OCS at 200–900 m water depths. These data provide a baseline for pattern and trend analyses of ambient sound and the ecosystem components of the OCS soundscapes. They contribute to understanding of regional processes over multi-year timescales and support ecosystem-based management of marine resources in an acoustically under-sampled ocean region.
more »
« less
- Award ID(s):
- 2125868
- PAR ID:
- 10600512
- Publisher / Repository:
- Oceanography
- Date Published:
- Journal Name:
- Oceanography
- ISSN:
- 1042-8275
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The ocean’s soundscape is fundamental to marine ecosystems, not only as a source of sensory information critical to many ecological processes but also as an indicator of biodiversity and habitat health. Yet, little is known about how ecoacoustic activity in marine habitats is altered by environmental changes such as temperature. The sounds produced by dense colonies of snapping shrimp dominate temperate and tropical coastal soundscapes worldwide and are a major driver broadband sound pressure level (SPL) patterns. Field recordings of soundscape patterns from the range limit of a snapping shrimp distribution showed that rates of snap production and associated SPL were closely positively correlated to water temperature. Snap rates changed by 15-60% per °C change in regional temperature, accompanied by fluctuations in SPL between 1-2 dB per °C. To test if this relationship was due to a direct effect of temperature, we measured snap rates in controlled experiments using two snapping shrimp species dominant in the Western Atlantic Ocean and Gulf of Mexico ( Alpheus heterochaelis and A. angulosus ). Snap rates were measured for shrimp held at different temperatures (across 10-30 °C range, with upper limit 2°C above current summer mean temperatures) and under different social groupings. Temperature had a significant effect on shrimp snap rates for all social contexts tested (individuals, pairs, and groups). For individuals and shrimp groups, snap production more than doubled between mid-range (20°C) and high (30°C) temperature treatments. Given that snapping shrimp sounds dominate the soundscapes of diverse habitats, including coral reefs, rocky bottoms, seagrass, and oyster beds, the strong influence of temperature on their activity will potentially alter soundscape patterns broadly. Increases in ambient sound levels driven by elevated water temperatures has ecological implications for signal detection, communication, and navigation in key coastal ecosystems for a wide range of organisms, including humans.more » « less
-
Decadal variations of ocean soundscapes are intricately linked to large-scale climatic and economic fluctuations. This study draws on over 15 years of acoustic recordings at six sites within the Southern California Bight, investigating interannual, seasonal, and diel variations. By examining acoustic energy from fin and blue whales along with sounds from ships and wind, we identified changes in soundscape over time and space. This study reveals that sound levels associated with both biological and non-biological sound sources varied seasonally and correlated with large-scale climatic patterns and long-term oceanographic fluctuations. Baleen whale sound levels before, during, and after a marine heatwave were assessed; sound levels decreased in southern sites and increased in northern sites adjacent to the California Current, underscoring the potential for range shifts and habitat compression during warm years for these species. Ship-generated sound levels at high-traffic sites reflected economic events such as recessions, labor shortages and negotiations, and changes to port activities. Marine soundscapes offer an approach to assess the ocean's condition amid ongoing climatic and economic fluctuations.more » « less
-
Abstract. Due to its remote location and extreme weather conditions, atmospheric in situmeasurements are rare in the Southern Ocean. As a result, aerosol–cloudinteractions in this region are poorly understood and remain a major source ofuncertainty in climate models. This, in turn, contributes substantially topersistent biases in climate model simulations such as the well-known positiveshortwave radiation bias at the surface, as well as biases in numericalweather prediction models and reanalyses. It has been shown in previousstudies that in situ and ground-based remote sensing measurements across theSouthern Ocean are critical for complementing satellite data sets due to theimportance of boundary layer and low-level cloud processes. These processesare poorly sampled by satellite-based measurements and are often obscured bymultiple overlying cloud layers. Satellite measurements also do not constrainthe aerosol–cloud processes very well with imprecise estimation of cloudcondensation nuclei. In this work, we present a comprehensive set of ship-basedaerosol and meteorological observations collected on the 6-weekSouthern Ocean Ross Sea Marine Ecosystem and Environment voyage(TAN1802) voyage of RV Tangaroa across the Southern Ocean, from Wellington, New Zealand, tothe Ross Sea, Antarctica. The voyage was carried out from 8 February to21 March 2018. Many distinct, but contemporaneous, data sets were collectedthroughout the voyage. The compiled data sets include measurements from arange of instruments, such as (i) meteorological conditions at the sea surfaceand profile measurements; (ii) the size and concentration of particles; (iii)trace gases dissolved in the ocean surface such as dimethyl sulfide andcarbonyl sulfide; (iv) and remotely sensed observations of low clouds. Here,we describe the voyage, the instruments, and data processing, and provide a briefoverview of some of the data products available. We encourage the scientificcommunity to use these measurements for further analysis and model evaluationstudies, in particular, for studies of Southern Ocean clouds, aerosol, andtheir interaction. The data sets presented in this study are publiclyavailable at https://doi.org/10.5281/zenodo.4060237 (Kremser et al., 2020).more » « less
-
The NOAA Pacific Marine Environmental Laboratory (PMEL) Ocean Climate Stations (OCS) project provides in situ measurements for quantifying air-sea interactions that couple the ocean and atmosphere. The project maintains two OceanSITES surface moorings in the North Pacific, one at the Kuroshio Extension Observatory in the Northwest Pacific subtropical recirculation gyre and the other at Station Papa in the Northeast Pacific subpolar gyre. OCS mooring time series are used as in situ references for assessing satellite and numerical weather prediction models. A spinoff of the PMEL Tropical Atmosphere Ocean (TAO) project, OCS moorings have acted as “research aggregating devices.” Working with and attracting wide-ranging partners, OCS scientists have collected process-oriented observations of variability on diurnal, synoptic, seasonal, and interannual timescales associated with anthropogenic climate change. Since 2016, they have worked to expand, test, and verify the observing capabilities of uncrewed surface vehicles and to develop observing strategies for integrating these unique, wind-powered observing platforms within the tropical Pacific and global ocean observing system. PMEL OCS has been at the center of the UN Decade of Ocean Sciences for Sustainable Development (2021–2030) effort to develop an Observing Air-Sea Interactions Strategy (OASIS) that links an expanded network of in situ air-sea interaction observations to optimized satellite observations, improved ocean and atmospheric coupling in Earth system models, and ultimately improved ocean information across an array of essential climate variables for decision-makers. This retrospective highlights not only achievements of the PMEL OCS project but also some of its challenges.more » « less
An official website of the United States government
