skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Individual Fairness with Group Constraints in Graph Neural Networks
Graph Neural Networks (GNNs) have demonstrated remarkable capabilities across various domains. Despite the successes of GNN deployment, their utilization often reflects societal biases, which critically hinder their adoption in high-stake decision-making scenarios such as online clinical diagnosis, financial crediting, etc. Numerous efforts have been made to develop fair GNNs but they typically concentrate on either individual or group fairness, overlooking the intricate interplay between the two, resulting in the enhancement of one, usually at the cost of the other. In addition, existing individual fairness approaches using a ranking perspective fail to identify discrimination in the ranking. This paper introduces two innovative notions dealing with individual graph fairness and group-aware individual graph fairness, aiming to more accurately measure individual and group biases. Our Group Equality Individual Fairness (GEIF) framework is designed to achieve individual fairness while equalizing the level of individual fairness among subgroups. Preliminary experiments on several real-world graph datasets demonstrate that GEIF outperforms state-of-the-art methods by a significant margin in terms of individual fairness, group fairness, and utility performance.  more » « less
Award ID(s):
2404039
PAR ID:
10600528
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IOS Press
Date Published:
Journal Name:
Proceedings of the 27th European Conference on Artificial Intelligence (ECAI), 2023
ISSN:
0922-6389
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Recent years have witnessed the pivotal role of Graph Neural Networks (GNNs) in various high-stake decision-making scenarios due to their superior learning capability. Close on the heels of the successful adoption of GNNs in different application domains has been the increasing societal concern that conventional GNNs often do not have fairness considerations. Although some research progress has been made to improve the fairness of GNNs, these works mainly focus on the notion of group fairness regarding different subgroups defined by a protected attribute such as gender, age, and race. Beyond that, it is also essential to study the GNN fairness at a much finer granularity (i.e., at the node level) to ensure that GNNs render similar prediction results for similar individuals to achieve the notion of individual fairness. Toward this goal, in this paper, we make an initial investigation to enhance the individual fairness of GNNs and propose a novel ranking based framework---REDRESS. Specifically, we refine the notion of individual fairness from a ranking perspective, and formulate the ranking based individual fairness promotion problem. This naturally addresses the issue of Lipschitz constant specification and distance calibration resulted from the Lipschitz condition in the conventional individual fairness definition. Our proposed framework REDRESS encapsulates the GNN model utility maximization and the ranking-based individual fairness promotion in a joint framework to enable end-to-end training. It is noteworthy mentioning that REDRESS is a plug-and-play framework and can be easily generalized to any prevalent GNN architectures. Extensive experiments on multiple real-world graphs demonstrate the superiority of REDRESS in achieving a good balance between model utility maximization and individual fairness promotion. Our open source code can be found here: https://github.com/yushundong/REDRESS. 
    more » « less
  2. null (Ed.)
    Graph mining is an essential component of recommender systems and search engines. Outputs of graph mining models typically provide a ranked list sorted by each item's relevance or utility. However, recent research has identified issues of algorithmic bias in such models, and new graph mining algorithms have been proposed to correct for bias. As such, algorithm developers need tools that can help them uncover potential biases in their models while also exploring the impacts of correcting for biases when employing fairness-aware algorithms. In this paper, we present FairRankVis, a visual analytics framework designed to enable the exploration of multi-class bias in graph mining algorithms. We support both group and individual fairness levels of comparison. Our framework is designed to enable model developers to compare multi-class fairness between algorithms (for example, comparing PageRank with a debiased PageRank algorithm) to assess the impacts of algorithmic debiasing with respect to group and individual fairness. We demonstrate our framework through two usage scenarios inspecting algorithmic fairness. 
    more » « less
  3. There has been significant progress in improving the performance of graph neural networks (GNNs) through enhancements in graph data, model architecture design, and training strategies. For fairness in graphs, recent studies achieve fair representations and predictions through either graph data pre-processing (e.g., node feature masking, and topology rewiring) or fair training strategies (e.g., regularization, adversarial debiasing, and fair contrastive learning). How to achieve fairness in graphs from the model architecture perspective is less explored. More importantly, GNNs exhibit worse fairness performance compared to multilayer perception since their model architecture (i.e., neighbor aggregation) amplifies biases. To this end, we aim to achieve fairness via a new GNN architecture. We propose Fair Message Passing (FMP) designed within a unified optimization framework for GNNs. Notably, FMP explicitly renders sensitive attribute usage in forward propagation for node classification task using cross-entropy loss without data pre-processing. In FMP, the aggregation is first adopted to utilize neighbors' information and then the bias mitigation step explicitly pushes demographic group node presentation centers together.In this way, FMP scheme can aggregate useful information from neighbors and mitigate bias to achieve better fairness and prediction tradeoff performance. Experiments on node classification tasks demonstrate that the proposed FMP outperforms several baselines in terms of fairness and accuracy on three real-world datasets. The code is available at https://github.com/zhimengj0326/FMP. 
    more » « less
  4. Graph neural networks (GNNs) have emerged as a powerful tool for modeling graph data due to their ability to learn a concise representation of the data by integrating the node attributes and link information in a principled fashion. However, despite their promise, there are several practical challenges that must be overcome to effectively use them for node classification problems. In particular, current approaches are vulnerable to different kinds of biases inherent in the graph data. First, if the class distribution is imbalanced, then the GNNs' loss function is biased towards classifying the majority class correctly rather than the minority class, which hurts the performance of the latter class. Second, due to homophily effect, the learned representation and subsequent downstream tasks may favor certain demographic groups over others when applied to social network data. To mitigate such biases, we propose a novel framework called Fairness-Aware Cost Sensitive Graph Convolutional Network (FACS-GCN) for classifying nodes in networks with skewed class distributions. Our approach combines a cost-sensitive exponential loss with an adversarial learning component to alleviate the ill-effects of both biases. The framework employs a stagewise additive modeling approach to ensure there is no significant loss in accuracy when imparting fairness into the GNN. Experimental results on 6 benchmark graph data demonstrate the effectiveness of FACS-GCN against comparable baseline methods in terms of promoting fairness while maintaining a high model accuracy on the majority of the datasets. 
    more » « less
  5. As machine learning becomes more widely adopted across domains, it is critical that researchers and ML engineers think about the inherent biases in the data that may be perpetuated by the model. Recently, many studies have shown that such biases are also imbibed in Graph Neural Network (GNN) models if the input graph is biased, potentially to the disadvantage of underserved and underrepresented communities. In this work, we aim to mitigate the bias learned by GNNs by jointly optimizing two different loss functions: one for the task of link prediction and one for the task of demographic parity. We further implement three different techniques inspired by graph modification approaches: the Global Fairness Optimization (GFO), Constrained Fairness Optimization (CFO), and Fair Edge Weighting (FEW) models. These techniques mimic the effects of changing underlying graph structures within the GNN and offer a greater degree of interpretability over more integrated neural network methods. Our proposed models emulate microscopic or macroscopic edits to the input graph while training GNNs and learn node embeddings that are both accurate and fair under the context of link recommendations. We demonstrate the effectiveness of our approach on four real world datasets and show that we can improve the recommendation fairness by several factors at negligible cost to link prediction accuracy. 
    more » « less