skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 4, 2026

Title: Efficient Duple Perturbation Robustness in Low-rank MDPs
The pursuit of robustness has recently been a popular topic in reinforcement learning (RL) research, yet the existing methods generally suffer from computation issues that obstruct their real-world implementation. In this paper, we consider MDPs with low-rank structures, where the transition kernel can be written as a linear product of feature map and factors. We introduce *duple perturbation* robustness, i.e. perturbation on both the feature map and the factors, via a novel characterization of (𝜉,𝜂) -ambiguity sets featuring computational efficiency. Our novel low-rank robust MDP formulation is compatible with the low-rank function representation view, and therefore, is naturally applicable to practical RL problems with large or even continuous state-action spaces. Meanwhile, it also gives rise to a provably efficient and practical algorithm with theoretical convergence rate guarantee. Lastly, the robustness of our proposed approach is justified by numerical experiments, including classical control tasks with continuous state-action spaces.  more » « less
Award ID(s):
2401391 2403240
PAR ID:
10600595
Author(s) / Creator(s):
; ; ;
Editor(s):
Ozay, Necmiye; Balzano, Laura; Panagou, Dimitra; Abate, Alessandro
Publisher / Repository:
PMLR
Date Published:
Volume:
283
Page Range / eLocation ID:
723-737
Subject(s) / Keyword(s):
Spectral Representation reinforcement learning duple perturbation robustness low-rank MDPs
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tamim Asfour, editor in (Ed.)
    A reinforcement learning (RL) control policy could fail in a new/perturbed environment that is different from the training environment, due to the presence of dynamic variations. For controlling systems with continuous state and action spaces, we propose an add-on approach to robustifying a pre-trained RL policy by augmenting it with an L1 adaptive controller (L1AC). Leveraging the capability of an L1AC for fast estimation and active ompensation of dynamic variations, the proposed approach can improve the robustness of an RL policy which is trained either in a simulator or in the real world without consideration of a broad class of dynamic variations. Numerical and real-world experiments empirically demonstrate the efficacy of the proposed approach in robustifying RL policies trained using both model-free and modelbased methods. 
    more » « less
  2. Many reinforcement learning (RL) applications have combinatorial action spaces, where each action is a composition of sub-actions. A standard RL approach ignores this inherent factorization structure, resulting in a potential failure to make meaningful inferences about rarely observed sub-action combinations; this is particularly problematic for offline settings, where data may be limited. In this work, we propose a form of linear Q-function decomposition induced by factored action spaces. We study the theoretical properties of our approach, identifying scenarios where it is guaranteed to lead to zero bias when used to approximate the Q-function. Outside the regimes with theoretical guarantees, we show that our approach can still be useful because it leads to better sample efficiency without necessarily sacrificing policy optimality, allowing us to achieve a better bias-variance trade-off. Across several offline RL problems using simulators and real-world datasets motivated by healthcare, we demonstrate that incorporating factored action spaces into valuebased RL can result in better-performing policies. Our approach can help an agent make more accurate inferences within underexplored regions of the state-action space when applying RL to observational datasets. 
    more » « less
  3. Analog circuit optimization and design presents a unique set of challenges in the IC design process. Many applications require for the designer to optimize for multiple competing objectives which poses a crucial challenge. Motivated by these practical aspects, we propose a novel method to tackle multi-objective optimization for analog circuit design in continuous action spaces. In particular, we propose to: (i) Extrapolate current techniques in Multi-Objective Reinforcement Learning (MORL) to continuous state and action spaces. (ii) Provide for a dynamically tunable trained model to query user defined preferences in multi-objective optimization in the analog circuit design context. 
    more » « less
  4. Recent advances in on-policy reinforcement learning (RL) methods enabled learning agents in virtual environments to master complex tasks with high-dimensional and continuous observation and action spaces. However, leveraging this family of algorithms in multi-fingered robotic grasping remains a challenge due to large sim-to-real fidelity gaps and the high sample complexity of on-policy RL algorithms. This work aims to bridge these gaps by first reinforcement-learning a multi-fingered robotic grasping policy in simulation that operates in the pixel space of the input: a single depth image. Using a mapping from pixel space to Cartesian space according to the depth map, this method transfers to the real world with high fidelity and introduces a novel attention mechanism that substantially improves grasp success rate in cluttered environments. Finally, the direct-generative nature of this method allows learning of multi-fingered grasps that have flexible end-effector positions, orientations and rotations, as well as all degrees of freedom of the hand. 
    more » « less
  5. null (Ed.)
    We present an efficient algorithm for model-free episodic reinforcement learning on large (potentially continuous) state-action spaces. Our algorithm is based on a novel Q-learning policy with adaptive data-driven discretization. The central idea is to maintain a finer partition of the state-action space in regions which are frequently visited in historical trajectories, and have higher payoff estimates. We demonstrate how our adaptive partitions take advantage of the shape of the optimal Q-function and the joint space, without sacrificing the worst-case performance. In particular, we recover the regret guarantees of prior algorithms for continuous state-action spaces, which additionally require either an optimal discretization as input, and/or access to a simulation oracle. Moreover, experiments demonstrate how our algorithm automatically adapts to the underlying structure of the problem, resulting in much better performance compared both to heuristics and Q-learning with uniform discretization. 
    more » « less