skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Leveraging Psychophysics to Infer the Mechanisms of Encoding Change in Vision
The use of population encoding models has come to dominate the study of human vision, serving as a primary tool for making inferences about neuroscience studies neural code changes based on indirect measurements. A popular approach in computational neuroimaging is to use such models to obtain estimates of neural population responses via IEM. Recent research suggests that this approach may be prone to identifiability problems, with multiple mechanisms of encoding change producing similar changes in the estimated population responses. Psychophysical data might be able to provide additional constraints to infer the encoding change mechanism underlying some behavior of interest. Here, we used simulation to explore exactly which of a number of changes in neural population codes could be differentiated from observed changes in psychophysical thresholds. Eight mechanisms of encoding change were under study: specific and nonspecific gain, specific and nonspecific tuning, specific suppression, specific suppression plus gain, and inward and outward tuning shifts. We simulated psychophysical thresholds as a function of both external noise (TvN curves) or stimulus value (TvS curves) for a number of variations of each one of the models. With the exception of specific gain and specific tuning, all mechanisms produced qualitatively different patterns of change in the TvN and TvS curves, suggesting that psychophysical studies can be used as a complement to IEM, and provide constraints on inferences based on the latter. We use our results to provide recommendations for researchers and to re-interpret previous psychophysical data in terms of mechanisms of encoding change.  more » « less
Award ID(s):
2319234
PAR ID:
10600680
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Computational Brain & Behavior
Volume:
8
Issue:
2
ISSN:
2522-0861
Page Range / eLocation ID:
262 to 285
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Synopsis Classic debates in community ecology focused on the complexities of considering an ecosystem as a super-organ or organism. New consideration of such perspectives could clarify mechanisms underlying the dynamics of forest carbon dioxide (CO2) uptake and water vapor loss, important for predicting and managing the future of Earth’s ecosystems and climate system. Here, we provide a rubric for considering ecosystem traits as aggregated, systemic, or emergent, i.e., representing the ecosystem as an aggregate of its individuals or as a metaphorical or literal super-organ or organism. We review recent approaches to scaling-up plant water relations (hydraulics) concepts developed for organs and organisms to enable and interpret measurements at ecosystem-level. We focus on three community-scale versions of water relations traits that have potential to provide mechanistic insight into climate change responses of forest CO2 and H2O gas exchange and productivity: leaf water potential (Ψcanopy), pressure volume curves (eco-PV), and hydraulic conductance (Keco). These analyses can reveal additional ecosystem-scale parameters analogous to those typically quantified for leaves or plants (e.g., wilting point and hydraulic vulnerability) that may act as thresholds in forest responses to drought, including growth cessation, mortality, and flammability. We unite these concepts in a novel framework to predict Ψcanopy and its approaching of critical thresholds during drought, using measurements of Keco and eco-PV curves. We thus delineate how the extension of water relations concepts from organ- and organism-scales can reveal the hydraulic constraints on the interaction of vegetation and climate and provide new mechanistic understanding and prediction of forest water use and productivity. 
    more » « less
  2. The tilt illusion—a bias in the perceived orientation of a center stimulus induced by an oriented surround—illustrates how context shapes visual perception. Although extensively studied for decades, we still lack a comprehensive account of the illusion that connects its behavioral and neural characteristics. Here, we demonstrate that the tilt illusion originates from dynamic changes in neural coding precision induced by the surround context. We simultaneously obtained psychophysical and functional MRI responses from human subjects while they viewed gratings in the absence and presence of an oriented surround and independently extracted sensory encoding precision from their behavioral and neural data. Both measures show that in the absence of an oriented surround, encoding reflects the natural scene statistics of orientation. However, with an oriented surround, encoding precision is significantly increased for stimuli similar to the surround orientation. This local change in encoding is sufficient to predict the behavioral characteristics of the tilt illusion using a Bayesian observer model. The effect of surround modulation increases along the ventral stream and is localized to the portion of the visual cortex with receptive fields at the center-surround boundary. The pattern of change in coding accuracy reflects the surround-conditioned orientation statistics in natural scenes, but cannot be explained by local stimulus configuration. Our results suggest that the tilt illusion naturally emerges from an adaptive coding strategy that efficiently reallocates neural coding resources based on the current stimulus context. 
    more » « less
  3. Abstract Number sense, the ability to decipher quantity, forms the foundation for mathematical cognition. How number sense emerges with learning is, however, not known. Here we use a biologically-inspired neural architecture comprising cortical layers V1, V2, V3, and intraparietal sulcus (IPS) to investigate how neural representations change with numerosity training. Learning dramatically reorganized neuronal tuning properties at both the single unit and population levels, resulting in the emergence of sharply-tuned representations of numerosity in the IPS layer. Ablation analysis revealed that spontaneous number neurons observed prior to learning were not critical to formation of number representations post-learning. Crucially, multidimensional scaling of population responses revealed the emergence of absolute and relative magnitude representations of quantity, including mid-point anchoring. These learnt representations may underlie changes from logarithmic to cyclic and linear mental number lines that are characteristic of number sense development in humans. Our findings elucidate mechanisms by which learning builds novel representations supporting number sense. 
    more » « less
  4. null (Ed.)
    ABSTRACT Organisms respond to shifts in climate means and variability via distinct mechanisms. Accounting for these differential responses and appropriately aggregating them is central to understanding and predicting responses to climate variability and change. Separately considering fitness components can clarify organismal responses: fecundity is primarily an integrated, additive response to chronic environmental conditions over time via mechanisms such as energy use and acquisition, whereas survival can be strongly influenced by short-term, extreme environmental conditions. In many systems, the relative importance of fecundity and survival constraints changes systematically along climate gradients, with fecundity constraints dominating at high latitudes or altitudes (i.e. leading range edges as climate warms), and survival constraints dominating at trailing range edges. Incorporating these systematic differences in models may improve predictions of responses to recent climate change over models that assume similar processes along environmental gradients. We explore how detecting and predicting shifts in fitness constraints can improve our ability to forecast responses to climate gradients and change. 
    more » « less
  5. The macaque middle temporal (MT) area is well known for its visual motion selectivity and relevance to motion perception, but the possibility of it also reflecting higher-level cognitive functions has largely been ignored. We tested for effects of task performance distinct from sensory encoding by manipulating subjects' temporal evidence-weighting strategy during a direction discrimination task while performing electrophysiological recordings from groups of MT neurons in rhesus macaques (one male, one female). This revealed multiple components of MT responses that were, surprisingly, not interpretable as behaviorally relevant modulations of motion encoding, or as bottom-up consequences of the readout of motion direction from MT. The time-varying motion-driven responses of MT were strongly affected by our strategic manipulation—but with time courses opposite the subjects' temporal weighting strategies. Furthermore, large choice-correlated signals were represented in population activity distinct from its motion responses, with multiple phases that lagged psychophysical readout and even continued after the stimulus (but which preceded motor responses). In summary, a novel experimental manipulation of strategy allowed us to control the time course of readout to challenge the correlation between sensory responses and choices, and population-level analyses of simultaneously recorded ensembles allowed us to identify strong signals that were so distinct from direction encoding that conventional, single-neuron-centric analyses could not have revealed or properly characterized them. Together, these approaches revealed multiple cognitive contributions to MT responses that are task related but not functionally relevant to encoding or decoding of motion for psychophysical direction discrimination, providing a new perspective on the assumed status of MT as a simple sensory area. SIGNIFICANCE STATEMENTThis study extends understanding of the middle temporal (MT) area beyond its representation of visual motion. Combining multineuron recordings, population-level analyses, and controlled manipulation of task strategy, we exposed signals that depended on changes in temporal weighting strategy, but did not manifest as feedforward effects on behavior. This was demonstrated by (1) an inverse relationship between temporal dynamics of behavioral readout and sensory encoding, (2) a choice-correlated signal that always lagged the stimulus time points most correlated with decisions, and (3) a distinct choice-correlated signal after the stimulus. These findings invite re-evaluation of MT for functions outside of its established sensory role and highlight the power of experimenter-controlled changes in temporal strategy, coupled with recording and analysis approaches that transcend the single-neuron perspective. 
    more » « less