As the crisis of confidence and trust in overseas foundries arises, the industry and academic community are paying increasing attention to Printed Circuit Board (PCB) security. PCB, the backbone of any electronic system hardware, always draws attackers’ attention as it carries system and design information. Numerous ways of PCB tampering (e.g., adding/replacing a component, eavesdropping on a trace and bypassing a connection) can lead to more severe problems, such as Intellectual Property (IP) violation, password leaking, the Internet of Things (IoT) attacks or even more. This paper proposes a technique of active self-defense PCB modules with zero performance overhead. Those protection modules will only be activated when the boards are exposed to the attacks. A set of PCBs with proposed protection modules is fabricated and tested to prove the effectiveness and efficiency of the techniques.
more »
« less
This content will become publicly available on April 24, 2026
SegPCBX: redefining automated PCB inspection with a novel PCB x-ray dataset for component analysis
- Award ID(s):
- 2415749
- PAR ID:
- 10600826
- Editor(s):
- Sendelbach, Matthew J; Schuch, Nivea G
- Publisher / Repository:
- SPIE
- Date Published:
- ISBN:
- 9781510686380
- Page Range / eLocation ID:
- 201
- Format(s):
- Medium: X
- Location:
- San Jose, United States
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Polychlorinated biphenyls (PCBs) have been associated with neurodevelopmental disorders. Several neurotoxic congeners display axial chirality and atropselectively affect cellular targets implicated in PCB neurotoxicity. Only limited information is available regarding the atropselective metabolism of these congeners in humans and their atropselective effects on neurotoxic outcomes. Here we investigate the hypothesis that the oxidation of 2,2′,3,3′,4,6′-hexachlorobiphenyl (PCB 132) by human liver microsomes (HLMs) and their effects on dopaminergic cells in culture are atropselective. Racemic PCB 132 was incubated with pooled or single donor HLMs, and levels and enantiomeric fractions of PCB 132 and its metabolites were determined gas chromatographically. The major metabolite was either 2,2′,3,4,4′,6′-hexachlorobiphenyl-3′-ol (3′-140), a 1,2-shift product, or 2,2′,3,3′,4,6′-hexachlorobiphenyl-5′-ol (5′-132). The PCB 132 metabolite profiles displayed interindividual differences and depended on the PCB 132 atropisomer. Computational studies suggested that 3′-140 is formed via a 3,4-arene oxide intermediate. The second eluting atropisomer of PCB 132, first eluting atropisomer of 3′-140, and second eluting atropisomer of 5′-132 were enriched in all HLM incubations. Enantiomeric fractions of the PCB 132 metabolites differed only slightly between the single donor HLM preparations investigated. Reactive oxygen species and levels of dopamine and its metabolites were not significantly altered after a 24 h exposure of dopaminergic cells to pure PCB 132 atropisomers. These findings suggest that there are interindividual differences in the atropselective biotransformation of PCB 132 to its metabolites in humans; however, the resulting atropisomeric enrichment of PCB 132 is unlikely to affect neurotoxic outcomes associated with the endpoints investigated in the study.more » « less
-
Abstract The placement of SMD components is usually performed with Cartesian type robots, a task known as pick-and-place (P&P). Small Selective Compliance Articulated Robot Arm (SCARA) robots are also growing in popularity for this use because of their quick and accurate performance. This paper describes the use of the Lean Robotic Micromanufacturing (LRM) framework applied on a large, 10kg payload, industrial SCARA robot for PCB assembly. The LRM framework guided the precision evaluation of the PCB assembly process and provided a prediction of the placement precision and yield. We experimentally evaluated the repeatability of the system, as well as the resulting collective errors during the assembly. Results confirm that the P&P task can achieve the required assembly tolerance of 200 microns without employing closed-loop visual servoing, therefore considerably decreasing the system complexity and assembly time.more » « less
An official website of the United States government
