skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: The effect of an intervention to reduce aflatoxin consumption from 6 to 18 mo of age on length-for-age z-scores in rural Tanzania: a cluster-randomized trial
Award ID(s):
1828910
PAR ID:
10601103
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
The American Journal of Clinical Nutrition
Date Published:
Journal Name:
The American Journal of Clinical Nutrition
Volume:
121
Issue:
2
ISSN:
0002-9165
Page Range / eLocation ID:
333 to 342
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Physical aging and structural recovery are the processes with which the structure of a system approaches equilibrium after some perturbation. Various methods exist, that initiate structural recovery, such as changing the temperature or applying a strong, external static field. This work is concerned with high alternating electric fields and their suitability to study structural recovery and aging. The present work demonstrates that rationalizing the nonlinear dielectric response of a supercooled liquid to high-amplitude ac-fields requires multiple fictive temperatures. This feature is in stark contrast to structural recovery after a temperature down-jump or a considerable increase in the static electric field, for which a single parameter, the fictive temperature or material time, describes the structural change. In other words, the structural recovery from a high ac-field does not adhere to time aging–time superposition, which is so characteristic of genuine aging processes. 
    more » « less
  3. Innate, infection-preventing resistance often varies between host life stages. Juveniles are more resistant than adults in some species, whereas the opposite pattern is true in others. This variation cannot always be explained by prior exposure or physiological constraints and so it has been hypothesized that trade-offs with other life-history traits may be involved. However, little is known about how trade-offs between various life-history traits and resistance at different life stages affect the evolution of age-specific resistance. Here, we use a mathematical model to explore how trade-offs with natural mortality, reproduction and maturation combine to affect the evolution of resistance at different life stages. Our results show that certain combinations of trade-offs have substantial effects on whether adults or juveniles are more resistant, with trade-offs between juvenile resistance and adult reproduction inherently more costly than trade-offs involving maturation or mortality (all else being equal), resulting in consistent evolution of lower resistance at the juvenile stage even when infection causes a lifelong fecundity reduction. Our model demonstrates how the differences between patterns of age-structured resistance seen in nature may be explained by variation in the trade-offs involved and our results suggest conditions under which trade-offs tend to select for lower resistance in juveniles than adults. 
    more » « less