Graph Neural Networks (GNNs) have been increasingly deployed in a plethora of applications. However, the graph data used for training may contain sensitive personal information of the involved individuals. Once trained, GNNs typically encode such information in their learnable parameters. As a consequence, privacy leakage may happen when the trained GNNs are deployed and exposed to potential attackers. Facing such a threat, machine unlearning for GNNs has become an emerging technique that aims to remove certain personal information from a trained GNN. Among these techniques, certified unlearning stands out, as it provides a solid theoretical guarantee of the information removal effectiveness. Nevertheless, most of the existing certified unlearning methods for GNNs are only designed to handle node and edge unlearning requests. Meanwhile, these approaches are usually tailored for either a specific design of GNN or a specially designed training objective. These disadvantages significantly jeopardize their flexibility. In this paper, we propose a principled framework named IDEA to achieve flexible and certified unlearning for GNNs. Specifically, we first instantiate four types of unlearning requests on graphs, and then we propose an approximation approach to flexibly handle these unlearning requests over diverse GNNs. We further provide theoretical guarantee of the effectiveness for the proposed approach as a certification. Different from existing alternatives, IDEA is not designed for any specific GNNs or optimization objectives to perform certified unlearning, and thus can be easily generalized. Extensive experiments on real-world datasets demonstrate the superiority of IDEA in multiple key perspectives.
more »
« less
This content will become publicly available on April 11, 2026
Efficient Unlearning for Spatio-temporal Graph (Student Abstract)
Machine unlearning is becoming increasingly important as deep models become more prevalent, particularly when there are frequent requests to remove the influence of specific training data due to privacy concerns or erroneous sensing signals. Spatial-temporal Graph Neural Networks, in particular, have been widely adopted in real-world applications that demand efficient unlearning, yet research in this area remains in its early stages. In this paper, we introduce STEPS, a framework specifically designed to address the challenges of spatio-temporal graph unlearning. Our results demonstrate that STEPS not only ensures data continuity and integrity but also significantly reduces the time required for unlearning, while minimizing the accuracy loss in the new model compared to a model with 0% unlearning.
more »
« less
- PAR ID:
- 10601287
- Publisher / Repository:
- PKP Publishing Services Network
- Date Published:
- Journal Name:
- Proceedings of the AAAI Conference on Artificial Intelligence
- Volume:
- 39
- Issue:
- 28
- ISSN:
- 2159-5399
- Page Range / eLocation ID:
- 29382 to 29384
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In response to recent data regulation requirements, machine unlearning (MU) has emerged as a critical process to remove the influence of specific examples from a given model. Although exact unlearning can be achieved through complete model retraining using the remaining dataset, the associated computational costs have driven the development of efficient, approximate unlearning techniques. Moving beyond data-centric MU approaches, our study introduces a novel model-based perspective: model sparsification via weight pruning, which is capable of reducing the gap between exact unlearning and approximate unlearning. We show in both theory and practice that model sparsity can boost the multi-criteria unlearning performance of an approximate unlearner, closing the approximation gap, while continuing to be efficient. This leads to a new MU paradigm, termed prune first, then unlearn, which infuses a sparse model prior into the unlearning process. Building on this insight, we also develop a sparsity-aware unlearning method that utilizes sparsity regularization to enhance the training process of approximate unlearning. Extensive experiments show that our proposals consistently benefit MU in various unlearning scenarios. A notable highlight is the 77% unlearning efficacy gain of fine-tuning (one of the simplest unlearning methods) when using sparsity-aware unlearning. Furthermore, we demonstrate the practical impact of our proposed MU methods in addressing other machine learning challenges, such as defending against backdoor attacks and enhancing transfer learning. Codes are available at this https URL.more » « less
-
Machine unlearning---efficiently removing the effect of a small "forget set" of training data on a pre-trained machine learning model---has recently attracted significant research interest. Despite this interest, however, recent work shows that existing machine unlearning techniques do not hold up to thorough evaluation in non-convex settings. In this work, we introduce a new machine unlearning technique that exhibits strong empirical performance even in such challenging settings. Our starting point is the perspective that the goal of unlearning is to produce a model whose outputs are statistically indistinguishable from those of a model re-trained on all but the forget set. This perspective naturally suggests a reduction from the unlearning problem to that of *data attribution, where the goal is to predict the effect of changing the training set on a model's outputs. Thus motivated, we propose the following meta-algorithm, which we call Datamodel Matching (DMM): given a trained model, we (a) use data attribution to predict the output of the model if it were re-trained on all but the forget set points; then (b) fine-tune the pre-trained model to match these predicted outputs. In a simple convex setting, we show how this approach provably outperforms a variety of iterative unlearning algorithms. Empirically, we use a combination of existing evaluations and a new metric based on the KL-divergence to show that even in non-convex settings, DMM achieves strong unlearning performance relative to existing algorithms. An added benefit of DMM is that it is a meta-algorithm, in the sense that future advances in data attribution translate directly into better unlearning algorithms, pointing to a clear direction for future progress in unlearning.more » « less
-
As privacy concerns escalate in the realm of machine learning, data owners now have the option to utilize machine unlearning to remove their data from machine learning models, following recent legislation. To enhance transparency in machine unlearning and avoid potential dishonesty by model providers, various verification strategies have been proposed. These strategies enable data owners to ascertain whether their target data has been effectively unlearned from the model. However, our understanding of the safety issues of machine unlearning verification remains nascent. In this paper, we explore the novel research question of whether model providers can circumvent verification strategies while retaining the information of data supposedly unlearned. Our investigation leads to a pessimistic answer: \textit{the verification of machine unlearning is fragile}. Specifically, we categorize the current verification strategies regarding potential dishonesty among model providers into two types. Subsequently, we introduce two novel adversarial unlearning processes capable of circumventing both types. We validate the efficacy of our methods through theoretical analysis and empirical experiments using real-world datasets. This study highlights the vulnerabilities and limitations in machine unlearning verification, paving the way for further research into the safety of machine unlearning.more » « less
-
Generative models such as Large Language Models (LLM) and Multimodal Large Language models (MLLMs) trained on massive web corpora can memorize and disclose individuals’ confidential and private data, raising legal and ethical concerns. While many previous works have addressed this issue in LLM via machine unlearning, it remains largely unexplored for MLLMs. To tackle this challenge, we introduce Multimodal Large Language Model Unlearning Benchmark (MLLMU-Bench), a novel benchmark aimed at advancing the understanding of multimodal machine unlearning. MLLMU-Bench consists of 500 fictitious profiles and 153 profiles for public celebrities, each profile feature over 14 customized question-answer pairs, evaluated from both multimodal (image+text) and unimodal (text) perspectives. The benchmark is divided into four sets to assess unlearning algorithms in terms of efficacy, generalizability, and model utility. Finally, we provide baseline results using existing generative model unlearning algorithms. Surprisingly, our experiments show that unimodal unlearning algorithms excel in generation tasks, while multimodal unlearning approaches perform better in classification with multimodal inputs.more » « less
An official website of the United States government
