skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2318641

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Machine unlearning is becoming increasingly important as deep models become more prevalent, particularly when there are frequent requests to remove the influence of specific training data due to privacy concerns or erroneous sensing signals. Spatial-temporal Graph Neural Networks, in particular, have been widely adopted in real-world applications that demand efficient unlearning, yet research in this area remains in its early stages. In this paper, we introduce STEPS, a framework specifically designed to address the challenges of spatio-temporal graph unlearning. Our results demonstrate that STEPS not only ensures data continuity and integrity but also significantly reduces the time required for unlearning, while minimizing the accuracy loss in the new model compared to a model with 0% unlearning. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026
  2. Free, publicly-accessible full text available March 31, 2026
  3. Due to the insufficient transient amount of energy supplied from ambient energy sources and constrained amount of energy storage in super-capacitors, energy harvesting (EH) nodes are limited with operations and vulnerable to frequent faults due to energy scarcity. Consequently, such faults will reduce reliability and energy utility due to data collisions, lost data, or idle listening. To address these challenges, this work implements a novelty task scheduling scheme to minimize energy waste and maximize throughput under these scenarios and constraints. To demonstrate the effectiveness, we use a green test bed using LoRa nodes for evaluation. 
    more » « less
  4. Spatio-temporal deep learning has drawn a lot of attention since many downstream real-world applications can benefit from accurate predictions. For example, accurate prediction of heavy rainfall events is essential for effective urban water usage, flooding warning, and mitigation. In this paper, we propose a strategy to leverage spatially connected real-world features to enhance prediction accuracy. Specifically, we leverage spatially connected real-world climate data to predict heavy rainfall risks in a broad range in our case study. We experimentally ascertain that our Trans-Graph Convolutional Network (TGCN) accurately predicts heavy rainfall risks and real estate trends, demonstrating the advantage of incorporating external spatially-connected real-world data to improve model performance, and it shows that this proposed study has a significant potential to enhance spatio-temporal prediction accuracy, aiding in efficient urban water usage, flooding risk warning, and fair housing in real estate. 
    more » « less