skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 18, 2026

Title: Scalable Generation of Spatial Transcriptomics from Histology Images via Whole-Slide Flow Matching
Spatial transcriptomics (ST) has emerged as a powerful technology for bridging histology imaging with gene expression profiling. However, its application has been limited by low throughput and the need for specialized experimental facilities. Prior works sought to predict ST from whole-slide histology images to accelerate this process, but they suffer from two major limitations. First, they do not explicitly model cell-cell interaction as they factorize the joint distribution of whole-slide ST data and predict the gene expression of each spot independently. Second, their encoders struggle with memory constraints due to the large number of spots (often exceeding 10,000) in typical ST datasets. Herein, we propose STFlow, a flow matching generative model that considers cell-cell interaction by modeling the joint distribution of gene expression of an entire slide. It also employs an efficient slide-level encoder with local spatial attention, enabling whole-slide processing without excessive memory overhead. On the recently curated HEST-1k and STImage-1K4M benchmarks, STFlow substantially outperforms state-of-the-art baselines and achieves over 18% relative improvements over the pathology foundation models.  more » « less
Award ID(s):
2403317
PAR ID:
10601459
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
International Conference on Machine Learning
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Histopathology images capture tissue morphology, while spatial transcriptomics (ST) provides spatially resolved gene expression, offering complementary molecular insights. However, acquiring ST data is costly and time-consuming, limiting its practical use. To address this, we propose HAGE (Hierarchical Alignment Gene-Enhanced), a framework that enhances pathology representation learning by predicting gene expression directly from histological images and integrating molecular context into the pathology model. HAGE leverages gene-type embeddings, which encode relationships among genes, guiding the model in learning biologically meaningful expression patterns. To further improve alignment between histology and gene expression, we introduce a hierarchical clustering strategy that groups image patches based on molecular and visual similarity, capturing both local and global dependencies. HAGE consistently outperforms existing methods across six datasets. In particular, on the HER2+ breast cancer cohort, it significantly improves the Pearson correlation coefficient by 8.0% and achieves substantial reductions in mean squared error and mean absolute error by 18.1% and 38.0%, respectively. Beyond gene expression prediction, HAGE improves downstream tasks, such as patch-level cancer classification and whole-slide image diagnostics, demonstrating its broader applicability. To the best of our knowledge, HAGE is the first framework to integrate gene co-expression as prior knowledge into a pathology image encoder via a cross-attention mechanism, enabling more biologically informed and accurate pathology representations. https://github.com/uta-smile/gene_expression. 
    more » « less
  2. Abstract Spatially resolved gene expression profiling provides insight into tissue organization and cell–cell crosstalk; however, sequencing-based spatial transcriptomics (ST) lacks single-cell resolution. Current ST analysis methods require single-cell RNA sequencing data as a reference for rigorous interpretation of cell states, mostly do not use associated histology images and are not capable of inferring shared neighborhoods across multiple tissues. Here we present Starfysh, a computational toolbox using a deep generative model that incorporates archetypal analysis and any known cell type markers to characterize known or new tissue-specific cell states without a single-cell reference. Starfysh improves the characterization of spatial dynamics in complex tissues using histology images and enables the comparison of niches as spatial hubs across tissues. Integrative analysis of primary estrogen receptor (ER)-positive breast cancer, triple-negative breast cancer (TNBC) and metaplastic breast cancer (MBC) tissues led to the identification of spatial hubs with patient- and disease-specific cell type compositions and revealed metabolic reprogramming shaping immunosuppressive hubs in aggressive MBC. 
    more » « less
  3. Abstract Spatially resolved transcriptomics technologies enable the measurement of transcriptome information while retaining the spatial context at the regional, cellular or sub-cellular level. While previous computational methods have relied on gene expression information alone for clustering single-cell populations, more recent methods have begun to leverage spatial location and histology information to improve cell clustering and cell-type identification. In this study, using seven semi-synthetic datasets with real spatial locations, simulated gene expression and histology images as well as ground truth cell-type labels, we evaluate 15 clustering methods based on clustering accuracy, robustness to data variation and input parameters, computational efficiency, and software usability. Our analysis demonstrates that even though incorporating the additional spatial and histology information leads to increased accuracy in some datasets, it does not consistently improve clustering compared with using only gene expression data. Our results indicate that for the clustering of spatial transcriptomics data, there are still opportunities to enhance the overall accuracy and robustness by improving information extraction and feature selection from spatial and histology data. 
    more » « less
  4. Abstract Spatial transcriptomics (ST) technologies measure gene expression at thousands of locations within a two-dimensional tissue slice, enabling the study of spatial gene expression patterns. Spatial variation in gene expression is characterized byspatial gradients, or the collection of vector fields describing the direction and magnitude in which the expression of each gene increases. However, the few existing methods that learn spatial gradients from ST data either make restrictive and unrealistic assumptions on the structure of the spatial gradients or do not accurately model discrete transcript locations/counts. We introduce SLOPER (for Score-based Learning Of Poisson-modeled Expression Rates), a generative model for learning spatial gradients (vector fields) from ST data. SLOPER models the spatial distribution of mRNA transcripts with aninhomogeneous Poisson point process (IPPP)and usesscore matchingto learn spatial gradients for each gene. SLOPER utilizes the learned spatial gradients in a novel diffusion-based sampling approach to enhance the spatial coherence and specificity of the observed gene expression measurements. We demonstrate that the spatial gradients and enhanced gene expression representations learned by SLOPER leads to more accurate identification of tissue organization, spatially variable gene modules, and continuous axes of spatial variation (isodepth) compared to existing methods. Software availabilitySLOPER is available athttps://github.com/chitra-lab/SLOPER. 
    more » « less
  5. Abstract Spatial transcriptomics data play a crucial role in cancer research, providing a nuanced understanding of the spatial organization of gene expression within tumor tissues. Unraveling the spatial dynamics of gene expression can unveil key insights into tumor heterogeneity and aid in identifying potential therapeutic targets. However, in many large-scale cancer studies, spatial transcriptomics data are limited, with bulk RNA-seq and corresponding Whole Slide Image (WSI) data being more common (e.g. TCGA project). To address this gap, there is a critical need to develop methodologies that can estimate gene expression at near-cell (spot) level resolution from existing WSI and bulk RNA-seq data. This approach is essential for reanalyzing expansive cohort studies and uncovering novel biomarkers that have been overlooked in the initial assessments. In this study, we present STGAT (Spatial Transcriptomics Graph Attention Network), a novel approach leveraging Graph Attention Networks (GAT) to discern spatial dependencies among spots. Trained on spatial transcriptomics data, STGAT is designed to estimate gene expression profiles at spot-level resolution and predict whether each spot represents tumor or non-tumor tissue, especially in patient samples where only WSI and bulk RNA-seq data are available. Comprehensive tests on two breast cancer spatial transcriptomics datasets demonstrated that STGAT outperformed existing methods in accurately predicting gene expression. Further analyses using the TCGA breast cancer dataset revealed that gene expression estimated from tumor-only spots (predicted by STGAT) provides more accurate molecular signatures for breast cancer sub-type and tumor stage prediction, and also leading to improved patient survival and disease-free analysis. Availability: Code is available at https://github.com/compbiolabucf/STGAT. 
    more » « less