We report the experimental resonance enhanced multiphoton ionization spectrum of isoquinoline between 315 and 310 nm, along with correlated electronic structure calculations on the ground and excited states of this species. This spectral region spans the origin transitions to a π–π* excited state, which previous work has suggested to be vibronically coupled with a lower lying singlet n–π* state. Our computational results corroborate previous density functional theory calculations that predict the vertical excitation energy for the n–π* state to be higher than the π–π* state; however, we find an increase in the C–N–C angle brings the n–π* state below the energy of the π–π* state. The calculations find two out-of-plane vibrational modes of the n–π* state, which may be brought into near resonance with the π–π* state as the C–N–C bond angle increases. Therefore, the C–N–C bond angle may be important in activating vibronic coupling between the states. We fit the experimental rotational contour with a genetic algorithm to determine the excited state rotational constants and orientation of the transition dipole moment. The fits show a mostly in-plane polarized transition, and the projection of the transition dipole moment in the a-b plane is about 84° away from the a axis. These results are consistent with the prediction of our electronic structure calculations for the transition dipole moment of the π–π* excited state.
more »
« less
This content will become publicly available on December 30, 2025
Electronic states of the N2+ ion dissociating to the four lowest dissociation limits: Energies, transition dipole moments, and Einstein coefficients
This study presents Born–Oppenheimer energies and transition dipole moments of the 36 lowest electronic states of the N2+ ion as a function of internuclear distance in the interval between 1.5 and 10 bohrs obtained in first-principles calculations. The electronic states are of the total electronic spin S = 1/2, 3/2, and 5/2, dissociating toward to the lowest four N(4S0) + N+(3P), N(2P0) + N+(3P), N(2D0) + N+(3P), and N(4S0) + N+(1D) dissociation limits. Energies of the lowest states, dissociating toward to the N(4S0) + N+(3P) limit, are computed accounting for relativistic corrections. The obtained potential energy curves and the transition dipole moments are employed to compute vibrational energies in these states, vibronic transition dipole moments, and the Einstein coefficients for radiative transitions between the vibronic levels.
more »
« less
- PAR ID:
- 10601465
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 161
- Issue:
- 24
- ISSN:
- 0021-9606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The four lowest Ω substates (X2Π3/2,g, X2Π1/2,g, A2Π3/2,u and A2Π1/2,u) of the cation have been studied by high-precision ab initio calculations in comparison with experimental high-resolution absorption spectra. The potential energy curves were calculated using the multi-reference configuration interaction (MRCI) method and Dirac method, respectively. Rovibrational levels of these electronic states were derived by solving the radial Schrödinger rovibrational equation. Molecular constants were obtained in fitting energy levels to a spectroscopic model. Using the fit spectroscopic constants and newly calculated transition dipole moment matrix elements, line strengths of vibronic bands in the A2Π3/2,u- X2Π3/2,g system, as well as Einstein A coefficients for 45 of these bands with ν′ = 11–19 and ν′′ = 1–5, have been derived. The Einstein A coefficients were used to compute radiative lifetimes of the ν′ = 11–19 vibrational levels of the A2Π3/2,u state. Enhancement factors for detecting the variation of the fine-structure constant (α) and the proton-to-electron mass ratio(µ) using transitions between nearly degenerate rovibronic levels of these low-lying states have been calculated.more » « less
-
Abstract A one-electron model Hamiltonian is used to characterize the non-valence correlation-bound (NVCB) anions of hexagonal polycyclic aromatic hydrocarbons (PAHs) C 6 n 2 H 6 n ( n = 3–7). The model incorporates atomic electrostatic moments up to the quadrupole, coupled inducible charges and dipoles, and atom-centered repulsive Gaussians to describe the interaction between the excess electron and PAH. These model components are parameterized on and validated against all-electron calculations. Good agreement is found between the static dipole polarizabilities obtained from the model and those from PBE0 density functional theory and second-order Møller–Plesset perturbation theory calculations. In the model, charge flow dominates the in-plane polarizability of PAHs larger than C 54 H 18 , yielding an approximately quadratic scaling of the mean polarizabilty with the number of carbon atoms. Inclusion of electrostatic interactions decreases the electron binding energies for the largest PAHs considered by about 20% and shift charge distribution from above and below the plane of the ring system toward the periphery. Analysis of the electrostatic and polarization interactions provides insight into qualitative trends in the electron binding energy and the charge distribution of the lowest energy NVCB anion.more » « less
-
The nonadiabatic states and dynamics are investigated for a linear vibronic coupling Hamiltonian with a static electronic splitting and weak off-diagonal Jahn-Teller coupling through a single vibration with a vibrational-electronic resonance. With a transformation of the electronic basis, this Hamiltonian is also applicable to the anti-correlated vibration in a symmetric homodimer with marginally strong constant off-diagonal coupling, where the non-adiabatic states and dynamics model electronic excitation energy transfer or self-exchange electron transfer. For parameters modeling a free-base naphthalocyanine, the nonadiabatic couplings are deeply quantum mechanical and depend on wavepacket width; scalar couplings are as important as the derivative couplings that are usually interpreted to depend on vibrational velocity in semiclassical curve crossing or surface hopping theories. A colored visualization scheme that fully characterizes the non-adiabatic states using the exact factorization is developed. The nonadiabatic states in this nested funnel have nodeless vibrational factors with strongly avoided zeroes in their vibrational probability densities. Vibronic dynamics are visualized through the vibrational coordinate dependent density of the time-dependent dipole moment in free induction decay. Vibrational motion is amplified by the nonadiabatic couplings, with asymmetric and anisotropic motions that depend upon the excitation polarization in the molecular frame and can be reversed by a change in polarization. This generates a vibrational quantum beat anisotropy in excess of 2/5. The amplitude of vibrational motion can be larger than that on the uncoupled potentials, and the electronic population transfer is maximized within one vibrational period. Most of these dynamics are missed by the adiabatic approximation, and some electronic and vibrational motions are completely suppressed by the Condon approximation of a coordinate-independent transition dipole between adiabatic states. For all initial conditions investigated, the initial nonadiabatic electronic motion is driven towards the lower adiabatic state, and criteria for this directed motion are discussed.more » « less
An official website of the United States government
