Abstract Tidal salt marshes are important ecosystems in the global carbon cycle. Understanding their net carbon exchange with the atmosphere is required to accurately estimate their net ecosystem carbon budget (NECB). In this study, we present the interannual net ecosystem exchange (NEE) of CO2derived from eddy covariance (EC) for aSpartina alterniflorasalt marsh. We found interannual NEE could vary up to 3‐fold and range from −58.5 ± 11.3 to −222.9 ± 12.4 g C m−2 year−1in 2016 and 2020, respectively. Further, we found that atmospheric CO2fluxes were spatially dependent and varied across short distances. High biomass regions along tidal creek and estuary edges had up to 2‐fold higher annual NEE than lower biomass marsh interiors. In addition to the spatial variation of NEE, regions of the marsh represented by distinct canopy zonation responded to environmental drivers differently. Low elevation edges (with taller canopies) had a higher correlation with river discharge (R2 = 0.61), the main freshwater input into the system, while marsh interiors (with short canopies) were better correlated with in situ precipitation (R2 = 0.53). Lastly, we extrapolated interannual NEE to the wider marsh system, demonstrating the potential underestimation of annual NEE when not considering spatially explicit rates of NEE. Our work provides a basis for further research to understand the temporal and spatial dynamics of productivity in coastal wetlands, ecosystems which are at the forefront of experiencing climate change induced variability in precipitation, temperature, and sea level rise that have the potential to alter ecosystem productivity.
more »
« less
Local water year values for the conterminous United States
Abstract Quantifying and predicting precipitation and water flow and their influences is challenged by the dynamic relationships between and timing of precipitation and water fluxes. To help with these challenges, scientists use “water year” to examine and predict the impacts of precipitation and relevant extreme climatic and hydrological events on ecosystems. However, traditional water year definitions used in the US lack a consideration of areal variation in climate and hydrology, which is needed when studying ecosystems at regional or national scales. We developed local water year (LWY) values that consider spatial variation using existing definitions whereby the water year begins in the month with the lowest or highest average monthly streamflow. We employed spatial interpolation to assign LWY start and end months to 202 subregions across the conterminous United States that range from 4,384 to 134,755 km2. This dataset can be linked with diverse climate, terrestrial, and aquatic data for broad‐scale studies.
more »
« less
- Award ID(s):
- 1638679
- PAR ID:
- 10601651
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Limnology and Oceanography Letters
- Volume:
- 10
- Issue:
- 5
- ISSN:
- 2378-2242
- Format(s):
- Medium: X Size: p. 660-669
- Size(s):
- p. 660-669
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The isotopic composition of precipitation is used to trace water cycling and climate change, but interpretations of the environmental information recorded in central Andean precipitation isotope ratios are hindered by a lack of multi‐year records, poor spatial distribution of observations, and a predominant focus on Rayleigh distillation. To better understand isotopic variability in central Andean precipitation, we present a three‐year record of semimonthly δ18Opand δ2Hpvalues from 15 stations in southern Peru and triple oxygen isotope data, expressed as ∆′17Op, from 32 precipitation samples. Consistent with previous work, we find that elevation correlates negatively with δ18Opand that seasonal δ18Opvariations are related to upstream rainout and local convection. Spatial δ18Opvariations and atmospheric back trajectories show that both eastern‐ and western‐derived air masses bring precipitation to southern Peru. Seasonal d‐excesspcycles record moisture recycling and relative humidity at remote moisture sources, and both d‐excesspand ∆′17Opclearly differentiate evaporated and non‐evaporated samples. These results begin to establish the natural range of unevaporated ∆′17Opvalues in the central Andes and set the foundation for future paleoclimate and paleoaltimetry studies in the region. This study highlights the hydrologic understanding that comes from a combination of δ18Op, d‐excessp, and ∆′17Opdata and helps identify the evaporation, recycling, and rainout processes that drive water cycling in the central Andes.more » « less
-
Abstract Extensive research has evaluated virtual water trade, the water embodied in traded commodities. However, relatively little research has examined virtual water storage or the water embodied in stored commodities. Just as in physical hydrology, both flows and stocks of virtual water resources must be considered to obtain an accurate representation of the system. Here we address the following question: How much water can be virtually stored in grain storage in the United States? To address this question, we employ a data‐intensive approach, in which a variety of government databases on agricultural production and grain storage capacities are combined with modeled estimates of grain crop water use. We determine the virtual water storage capacity (VWSC) in grain silos, map the spatial distribution of VWSC, calculate contributions from irrigation and rainwater sources, and assess changes in VWSC over time. We find that 728 km3of water could be stored as grain in the United States, with roughly 86% coming from precipitation. National VWSC capacities were 777 km3in 2002, 681 km3in 2007, and 728 km3in 2012. This represents a 6% decline in VWSC over the full 10‐year period, mostly attributable to increased water productivity. VWSC represents 62% of U.S. dam storage and accounts for 75–97% of precipitation receipts to agricultural areas, depending on the year. This work enhances our understanding of the food‐water nexus, will enable virtual water trade models to incorporate temporal dynamics, and can be used to better understand the buffering capacity of infrastructure to climate shocks.more » « less
-
Abstract Riparian zones are a critical terrestrial‐aquatic ecotone. They play important roles in ecosystems including (1) harboring biodiversity, (2) influencing light and carbon fluxes to aquatic food webs, (3) maintaining water quality and streamflow, (4) enhancing aquatic habitat, (5) influencing greenhouse gas production, and (6) sequestering carbon. Defining what qualifies as a riparian zone is a first step to delineation. Many definitions of riparian boundaries focus on static attributes or a subset of potential functions without recognizing that they are spatially continuous, temporally dynamic, and multi‐dimensional. We emphasize that definitions should consider multiple ecological and biogeochemical functions and physical gradients, and explore how this approach influences spatial characterization of riparian zones. One or more of the following properties can guide riparian delineation: (1) distinct species, elevated biodiversity, or species with specific adaptations to flooding and inundation near streams relative to nearby upland areas; (2) unique vegetation structure directly influencing irradiance or organic material inputs to aquatic ecosystems; (3) hydrologic and geomorphic features or processes maintaining floodplains; (4) hydric soil properties that differ from the uplands; and/or (5) elevated retention of dissolved and suspended materials relative to adjacent uplands. Considering these properties for an operational and dynamic definition of riparian zones recognizes that riparian boundaries vary in space (e.g., variation of riparian corridor widths within or among watersheds) and time (e.g., responses to hydrological variance and climate change). Inclusive definitions addressing multiple riparian functions could facilitate attainment of research and management goals by linking properties of interest to specific outcomes.more » « less
-
The relationship between precipitation and evapotranspiration (ET) is critical to understanding water cycle related dynamics in ecosystems, including crops. Existing studies of bioenergy crops have primarily focused on annual or seasonal ET rates, with less attention given to the immediate ET response following precipitation events. This study examines the variation in ET rates in the days subsequent to precipitation events across various bioenergy crops—corn, switchgrass, and prairies—utilizing 13 years (2010–2022) of growing season data. Meteorological and eddy covariance flux data were collected from seven eddy covariance flux towers as part of the GLBRC scale-up experiment at the Kellogg Biological Station Long Term Ecological Research sites. The analysis revealed that average ET peaked the day after precipitation and declined linearly over the following days, with a statistically significant relationship (p-value = 0.00027, R2= 0.96). Neither the type of biofuel vegetation nor the historical land use significantly influenced ET post-precipitation events (p-values = 0.53 and 0.153, respectively). Key predictors of ET following precipitation events include shortwave radiation, season, day of the year, ambient temperature, vapor pressure deficit (VPD), long-wave radiation, precipitation amount, soil moisture, and annual variability. These findings enhance our comprehension of ET responses in bioenergy crop systems, with implications for water management in sustainable agriculture.more » « less
An official website of the United States government
