Magnetoelastic thin shells exhibit great potential in realizing versatile functionalities through a broad range of combination of material stiffness, remnant magnetization intensity, and external magnetic stimuli. In this paper, we propose a novel computational method for forward simulation and inverse design of magnetoelastic thin shells. Our system consists of two key components of forward simulation and backward optimization. On the simulation side, we have developed a new continuum mechanics model based on the Kirchhoff-Love thin-shell model to characterize the behaviors of a megnetolelastic thin shell under external magnetic stimuli. Based on this model, we proposed an implicit numerical simulator facilitated by the magnetic energy Hessian to treat the elastic and magnetic stresses within a unified framework, which is versatile to incorporation with other thin shell models. On the optimization side, we have devised a new differentiable simulation framework equipped with an efficient adjoint formula to accommodate various PDE-constraint, inverse design problems of magnetoelastic thin-shell structures, in both static and dynamic settings. It also encompasses applications of magnetoelastic soft robots, functional Origami, artworks, and meta-material designs. We demonstrate the efficacy of our framework by designing and simulating a broad array of magnetoelastic thin-shell objects that manifest complicated interactions between magnetic fields, materials, and control policies.
more »
« less
Kirchhoff-Love Shells with Arbitrary Hyperelastic Materials
Kirchhoff-Love shells are commonly used in many branches of engineering, including in computer graphics, but have so far been simulated only under limited nonlinear material options. We derive the Kirchhoff-Love thin-shell mechanical energy for an arbitrary 3D volumetric hyperelastic material, including isotropic materials, anisotropic materials, and materials whereby the energy includes both even and odd powers of the principal stretches. We do this by starting with any 3D hyperelastic material, and then analytically computing the corresponding thin-shell energy limit. This explicitly identifies and separates in-plane stretching and bending terms, and avoids numerical quadrature. Thus, in-plane stretching and bending are shown to originate from one and the same process (volumetric elasticity of thin objects), as opposed to from two separate processes as done traditionally in cloth simulation. Because we can simulate materials that include both even and odd powers of stretches, we can accommodate standard mesh distortion energies previously employed for 3D solid simulations, such as Symmetric ARAP and Co-rotational materials. We relate the terms of our energy to those of prior work on Kirchhoff-Love thin-shells in computer graphics that assumed small in-plane stretches, and demonstrate the visual difference due to the presence of our exact stretching and bending terms. Furthermore, our formulation allows us to categorize all distinct hyperelastic Kirchhoff-Love thin-shell energies. Specifically, we prove that for Kirchhoff-Love thin-shells, the space of all hyperelastic materials collapses to two-dimensional hyperelastic materials. This observation enables us to create an interface for the design of thin-shell Kirchhoff-Love mechanical energies, which in turn enables us to create thin-shell materials that exhibit arbitrary stiffness profiles under large deformations.
more »
« less
- Award ID(s):
- 1911224
- PAR ID:
- 10601944
- Publisher / Repository:
- Association for Computing Machinery (ACM)
- Date Published:
- Journal Name:
- ACM Transactions on Graphics
- Volume:
- 42
- Issue:
- 6
- ISSN:
- 0730-0301
- Format(s):
- Medium: X Size: p. 1-15
- Size(s):
- p. 1-15
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A nonlinear small-strain elastic theory is constructed from a systematic expansion in Biot strains, truncated at quadratic order. The primary motivation is the desire for a clean separation between stretching and bending energies for shells, which appears to arise only from reduction of a bulk energy of this type. An approximation of isotropic invariants, bypassing the solution of a quartic equation or computation of tensor square roots, allows stretches, rotations, stresses, and balance laws to be written in terms of derivatives of position. Two-field formulations are also presented. Extensions to anisotropic theories are briefly discussed.more » « less
-
Ye, Yuting; Wang Huamin (Ed.)Angle-based energies appear in numerous physics-based simulation models, including thin-shell bending and isotropic elastic strands. We present a generic analysis of these energies that allows us to analytically filter the negative eigenvalues of the second derivative (Hessian), which is critical for stable, implicit time integration. While these energies are usually formulated in terms of angles and positions, we propose an abstract edge stencil that succinctly parameterizes the edge deformation, and allows us to derive generic, closed-form analytical expressions for the energy eigensystems. The resultant eigenvectors have straightforward geometric interpretations. We demonstrate that our method is readily applicable to a variety of 2D and 3D angle-based elastic energies, including both cloth and strands, and is up to 7x faster than numerical eigendecomposition.more » « less
-
Capturing material properties of real-world elastic solids is both challenging and highly relevant to many applications in computer graphics, robotics and related fields. We give a non-intrusive, in-situ and inexpensive approach to measure the nonlinear elastic energy density function of man-made materials and biological tissues. We poke the elastic object with 3d-printed rigid cylinders of known radii, and use a precision force meter to record the contact force as a function of the indentation depth, which we measure using a force meter stand, or a novel unconstrained laser setup. We model the 3D elastic solid using the Finite Element Method (FEM), and elastic energy using a compressible Valanis-Landel material that generalizes Neo-Hookean materials by permitting arbitrary tensile behavior under large deformations. We then use optimization to fit the nonlinear isotropic elastic energy so that the FEM contact forces and indentations match their measured real-world counterparts. Because we use carefully designed cubic splines, our materials are accurate in a large range of stretches and robust to inversions, and are therefore animation-ready for computer graphics applications. We demonstrate how to exploit radial symmetry to convert the 3D elastostatic contact problem to the mathematically equivalent 2D problem, which vastly accelerates optimization. We also greatly improve the theory and robustness of stretch-based elastic materials, by giving a simple and elegant formula to compute the tangent stiffness matrix, with rigorous proofs and singularity handling. We also contribute the observation that volume compressibility can be estimated by poking with rigid cylinders of different radii, which avoids optical cameras and greatly simplifies experiments. We validate our method by performing full 3D simulations using the optimized materials and confirming that they match real-world forces, indentations and real deformed 3D shapes. We also validate it using a Shore 00 durometer, a standard device for measuring material hardness.more » « less
-
Abstract Thin-walled corrugated tubes that have a bending multistability, such as the bendy straw, allow for variable orientations over the tube length. Compared to the long history of corrugated tubes in practical applications, the mechanics of the bending stability and how it is affected by the cross sections and other geometric parameters remain unknown. To explore the geometry-driven bending stabilities, we used several tools, including a reduced-order simulation package, a simplified linkage model, and physical prototypes. We found the bending stability of a circular two-unit corrugated tube is dependent on the longitudinal geometry and the stiffness of the crease lines that connect separate frusta. Thinner shells, steeper cones, and weaker creases are required to achieve bending bi-stability. We then explored how the bending stability changes as the cross section becomes elongated or distorted with concavity. We found the bending bi-stability is favored by deep and convex cross sections, while wider cross sections with a large concavity remain mono-stable. The different geometries influence the amounts of stretching and bending energy associated with bending the tube. The stretching energy has a bi-stable profile and can allow for a stable bent configuration, but it is counteracted by the bending energy which increases monotonically. The findings from this work can enable informed design of corrugated tube systems with desired bending stability behavior.more » « less
An official website of the United States government
