skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: dsJSON: A Distributed SQL JSON Processor
The popularity of JSON as a data interchange format resulted in big amounts of datasets available for processing. Users would like to analyze this data using SQL queries but existing distributed systems limit their users to only two specific formats, JSONLine and GeoJSON. The complexity of JSON schema makes it challenging to parse arbitrary files in a modern distributed system while producing records with unified schema that can be processed with SQL. To address these challenges, this paper introduces dsJSON, a state-of-the-art distributed JSON processor that overcomes limitations in existing systems and scales to big and complex data. dsJSON introduces the projection tree, a novel data structure that applies selective parsing of nested attributes to produce records that are ready for SQL processors. The key objective of the projection tree is to parse a big JSON file in parallel to produce records with a unified schema that can be processed with SQL. dsJSON is integrated into SparkSQL which enables users to run arbitrary SQL queries on complex JSON files. It also pushes projection and filter down into the parser for full integration between the parser and the processor. Experiments on up-to two terabytes of real data show that dsJSON performs several times faster than existing systems. It can also efficiently parse extremely large files not supported by existing distributed parsers  more » « less
Award ID(s):
2046236 1924694 1954644 1838222 1751392
PAR ID:
10602000
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Association for Computing Machinery (ACM)
Date Published:
Journal Name:
Proceedings of the ACM on Management of Data
Volume:
1
Issue:
1
ISSN:
2836-6573
Format(s):
Medium: X Size: p. 1-25
Size(s):
p. 1-25
Sponsoring Org:
National Science Foundation
More Like this
  1. In this demonstration, we present SpeakQL, a speech-driven query system and interface for structured data. SpeakQL supports a tractable and practically useful subset of regular SQL, allowing users to query in any domain with unbounded vocabulary with the help of speech/touch based user-in-the-loop mechanisms for correction. When querying in such domains, automatic speech recognition introduces countless forms of errors in transcriptions, presenting us with a technical challenge. We characterize such errors and leverage our observations along with SQL's unambiguous context-free grammar to first correct the query structure. We then exploit phonetic representation of the queried database to identify the correct Literals, hence delivering the corrected transcribed query. In this demo, we show that SpeakQL helps users reduce time and effort in specifying SQL queries significantly. In addition, we show that SpeakQL, unlike Natural Language Interfaces and conversational assistants, allows users to query over any arbitrary database schema. We allow the audience to explore SpeakQL using an easy-to-use web-based interface to compose SQL queries. 
    more » « less
  2. Ad-hoc data models like JSON make it easy to evolve schemas and to multiplex different data-types into a single stream. This flexibility makes JSON great for generating data, but also makes it much harder to query, ingest into a database, and index. In this paper, we explore the first step of JSON data loading: schema design. Specifically, we consider the challenge of designing schemas for existing JSON datasets as an interactive problem. We present SchemaDrill, a roll-up/drill-down style interface for exploring collections of JSON records. SchemaDrill helps users to visualize the collection, identify relevant fragments, and map it down into one or more flat, relational schemas. We describe and evaluate two key components of SchemaDrill: (1) A summary schema representation that significantly reduces the complexity of JSON schemas without a meaningful reduction in information content, and (2) A collection of schema visualizations that help users to qualitatively survey variability amongst different schemas in the collection. 
    more » « less
  3. Speech-driven querying is becoming popular in new device environments such as smartphones, tablets, and even conversational assistants. However, such querying is largely restricted to natural language. Typed SQL remains the gold standard for sophisticated structured querying although it is painful in many environments, which restricts when and how users consume their data. In this work, we propose to bridge this gap by designing a speech-driven querying system and interface for structured data we call SpeakQL. We support a practically useful subset of regular SQL and allow users to query in any domain with novel touch/speech based human-in-the-loop correction mechanisms. Automatic speech recognition (ASR) introduces myriad forms of errors in transcriptions, presenting us with a technical challenge. We exploit our observations of SQL's properties, its grammar, and the queried database to build a modular architecture. We present the first dataset of spoken SQL queries and a generic approach to generate them for any arbitrary schema. Our experiments show that SpeakQL can automatically correct a large fraction of errors in ASR transcriptions. User studies show that SpeakQL can help users specify SQL queries significantly faster with a speedup of average 2.7x and up to 6.7x compared to typing on a tablet device. SpeakQL also reduces the user effort in specifying queries by a factor of average 10x and up to 60x compared to raw typing effort. 
    more » « less
  4. Text-to-SQL systems empower users to interact with databases using natural language, automatically translating queries into executable SQL code. However, their reliance on database schema information for SQL generation exposes them to significant security vulnerabilities, particularly schema inference attacks that can lead to unauthorized data access or manipulation. In this paper, we introduce a novel zero-knowledge framework for reconstructing the underlying database schema of text-to-SQL models without any prior knowledge of the database. Our approach systematically probes text-to-SQL models with specially crafted questions and leverages a surrogate GPT-4 model to interpret the outputs, effectively uncovering hidden schema elements—including tables, columns, and data types. We demonstrate that our method achieves high accuracy in reconstructing table names, with F1 scores of up to .99 for generative models and .78 for fine-tuned models, underscoring the severity of schema leakage risks. We also show that our attack can steal prompt information in non-text-to-SQL models. Furthermore, we propose a simple protection mechanism for generative models and empirically show its limitations in mitigating these attacks. 
    more » « less
  5. Mastering SQL is a key data science competence. While most large language models are able to translate natural language queries to SQL, their ability to tutor learners and authentically assess student assignments are at the least fragile. In this paper, we introduce {\em ExplainS} as an experimental prototype. In this web-based system, we augment Gemini with abstract syntax tree (AST) to enhance Gemini's semantic analysis power to be able to assist and tutor students better. This edition of ExplainS provides a collection of exercises with varying difficulty levels, covering core SQL concepts. Users interact with a dynamic schema display, and their queries are validated against carefully crafted solutions. To provide context-aware personalized feedback, ExplainS leverages Gemini and the SQLglot library to analyze query AST differences between user queries and correct solutions, pinpointing the root cause of errors. This emerging research is part of a wider Data Science effort, and in this paper, we only focus on the meaningful feedback generation component of the ExplainS system. 
    more » « less