Deadlocks, in which threads wait on each other in a cyclic fashion and can't make progress, have plagued parallel programs for decades. In recent years, as the parallel programming mechanism known as futures has gained popularity, interest in preventing deadlocks in programs with futures has increased as well. Various static and dynamic algorithms exist to detect and prevent deadlock in programs with futures, generally by constructing some approximation of the dependency graph of the program but, as far as we are aware, all are specialized to a particular programming language. A recent paper introduced graph types, by which one can statically approximate the dependency graphs of a program in a language-independent fashion. By analyzing the graph type directly instead of the source code, a graph-based program analysis, such as one to detect deadlock, can be made language-independent. Indeed, the paper that proposed graph types also proposed a deadlock detection algorithm. Unfortunately, the algorithm was based on an unproven conjecture which we show to be false. In this paper, we present, and prove sound, a type system for finding possible deadlocks in programs that operates over graph types and can therefore be applied to many different languages. As a proof of concept, we have implemented the algorithm over a subset of the OCaml language extended with built-in futures.
more »
« less
Static prediction of parallel computation graphs
Many algorithms for analyzing parallel programs, for example to detect deadlocks or data races or to calculate the execution cost, are based on a model variously known as a cost graph, computation graph or dependency graph, which captures the parallel structure of threads in a program. In modern parallel programs, computation graphs are highly dynamic and depend greatly on the program inputs and execution details. As such, most analyses that use these graphs are either dynamic analyses or are specialized static analyses that gather a subset of dependency information for a specific purpose. This paper introduces graph types, which compactly represent all of the graphs that could arise from program execution. Graph types are inferred from a parallel program using a graph type system and inference algorithm, which we present drawing on ideas from Hindley-Milner type inference, affine logic and region type systems. We have implemented the inference algorithm over a subset of OCaml, extended with parallelism primitives, and we demonstrate how graph types can be used to accelerate the development of new graph-based static analyses by presenting proof-of-concept analyses for deadlock detection and cost analysis.
more »
« less
- PAR ID:
- 10602088
- Publisher / Repository:
- Association for Computing Machinery (ACM)
- Date Published:
- Journal Name:
- Proceedings of the ACM on Programming Languages
- Volume:
- 6
- Issue:
- POPL
- ISSN:
- 2475-1421
- Format(s):
- Medium: X Size: p. 1-31
- Size(s):
- p. 1-31
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Parallel programs are frequently modeled asdependencyorcostgraphs, which can be used to detect various bugs, or simply to visualize the parallel structure of the code. However, such graphs reflect just one particular execution and are typically constructed in apost-hocmanner.Graph types, which were introduced recently to mitigate this problem, can be assigned statically to a program by a type system and compactly represent the family of all graphs that could result from the program. Unfortunately, prior work is restricted in its treatment offutures, an increasingly common and especially dynamic form of parallelism. In short, each instance of a future must be statically paired with a vertex name. Previously, this led to the restriction that futures could not be placed in collections or be used to construct data structures. Doing so is not a niche exercise: such structures form the basis of numerous algorithms that use forms of pipelining to achieve performance not attainable without futures. All but the most limited of these examples are out of reach of prior graph type systems. In this paper, we propose a graph type system that allows for almost arbitrary combinations of futures and recursive data types. We do so by indexing datatypes with a type-levelvertex structure, a codata structure that supplies unique vertex names to the futures in a data structure. We prove the soundness of the system in a parallel core calculus annotated with vertex structures and associated operations. Although the calculus is annotated, this is merely for convenience in defining the type system. We prove that it is possible to annotate arbitrary recursive types with vertex structures, and show using a prototype inference engine that these annotations can be inferred from OCaml-like source code for several complex parallel algorithms.more » « less
-
Call graph or caller-callee relationships have been used for various kinds of static program analysis, performance analysis and profiling, and for program safety or security analysis such as detecting anomalies of program execution or code injection attacks. However, different tools generate call graphs in different formats, which prevents efficient reuse of call graph results. In this paper, we present an approach of using ontology and resource description framework (RDF) to create knowledge graphs for specifying call graphs to facilitate the construction of full-fledged and complex call graphs of computer programs, realizing more interoperable and scalable program analyses than conventional approaches. We create a formal ontology-based specification of call graph information to capture concepts and properties of both static and dynamic call graphs so different tools can collaboratively contribute to more comprehensive analysis results. Our experiments show that ontology enables merging of call graphs generated from different tools and flexible queries using a standard query interface.more » « less
-
Probabilistic programming languages (PPLs) provide language support for expressing flexible probabilistic models and solving Bayesian inference problems. PPLs withprogrammable inferencemake it possible for users to obtain improved results by customizing inference engines usingguideprograms that are tailored to a correspondingmodelprogram. However, errors in guide programs can compromise the statistical soundness of the inference. This article introduces a novel coroutine-based framework for verifying the correctness of user-written guide programs for a broad class of Markov chain Monte Carlo (MCMC) inference algorithms. Our approach rests on a novel type system for describing communication protocols between a model program and a sequence of guides that each update only a subset of random variables. We prove that, by translating guide types to context-free processes with finite norms, it is possible to check structural type equality between models and guides in polynomial time. This connection gives rise to an efficienttype-inference algorithmfor probabilistic programs with flexible constructs such as general recursion and branching. We also contribute acoverage-checking algorithmthat verifies the support of sequentially composed guide programs agrees with that of the model program, which is a key soundness condition for MCMC inference with multiple guides. Evaluations on diverse benchmarks show that our type-inference and coverage-checking algorithms efficiently infer types and detect sound and unsound guides for programs that existing static analyses cannot handle.more » « less
-
Abstract Dynamic (temporal) graphs are a convenient mathematical abstraction for many practical complex systems including social contacts, business transactions, and computer communications. Community discovery is an extensively used graph analysis kernel with rich literature for static graphs. However, community discovery in a dynamic setting is challenging for two specific reasons. Firstly, the notion of temporal community lacks a widely accepted formalization, and only limited work exists on understanding how communities emerge over time. Secondly, the added temporal dimension along with the sheer size of modern graph data necessitates new scalable algorithms. In this paper, we investigate how communities evolve over time based on several graph metrics under a temporal formalization. We compare six different algorithmic approaches for dynamic community detection for their quality and runtime. We identify that a vertex-centric (local) optimization method works as efficiently as the classical modularity-based methods. To its advantage, such local computation allows for the efficient design of parallel algorithms without incurring a significant parallel overhead. Based on this insight, we design a shared-memory parallel algorithmDyComPar, which demonstrates between 4 and 18 fold speed-up on a multi-core machine with 20 threads, for several real-world and synthetic graphs from different domains.more » « less
An official website of the United States government
