skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: LooPy: interactive program synthesis with control structures
One vision for program synthesis, and specifically for programming by example (PBE), is an interactive programmer's assistant, integrated into the development environment. To make program synthesis practical for interactive use, prior work on Small-Step Live PBE has proposed to limit the scope of synthesis to small code snippets, and enable the users to provide local specifications for those snippets. This paradigm, however, does not work well in the presence of loops. We present LooPy, a synthesizer integrated into a live programming environment, which extends Small-Step Live PBE to work inside loops and scales it up to synthesize larger code snippets, while remaining fast enough for interactive use. To allow users to effectively provide examples at various loop iterations, even when the loop body is incomplete, LooPy makes use oflive execution, a technique that leverages the programmer as an oracle to step over incomplete parts of the loop. To enable synthesis of loop bodies at interactive speeds, LooPy introducesIntermediate State Graph, a new data structure, which compactly represents a large space of code snippets composed of multiple assignment statements and conditionals. We evaluate LooPy empirically using benchmarks from competitive programming and previous synthesizers, and show that it can solve a wide variety of synthesis tasks at interactive speeds. We also perform a small qualitative user study which shows that LooPy'sblock-levelspecifications are easy for programmers to provide.  more » « less
Award ID(s):
2107397
PAR ID:
10603046
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Association for Computing Machinery (ACM)
Date Published:
Journal Name:
Proceedings of the ACM on Programming Languages
Volume:
5
Issue:
OOPSLA
ISSN:
2475-1421
Format(s):
Medium: X Size: p. 1-29
Size(s):
p. 1-29
Sponsoring Org:
National Science Foundation
More Like this
  1. Programming by example allows users to create programs without coding, by simply specifying input and output pairs.We introduce the problem of digital signal processing programming by example (DSP-PBE), where users specify input and output wave files, and a tool automatically synthesizes a program that transforms the input to the output. This program can then be applied to new wave files, giving users a new way to interact with music and program code. We formally define the problem of DSP-PBE, and provide a first implementation of a solution that can handle synthesis over commutative filters. 
    more » « less
  2. We present an enumerative program synthesis framework calledcomponent-based refactoringthat can refactor “direct” style code that does not use library components into equivalent “combinator” style code that does use library components. This framework introduces a sound but incomplete technique to check the equivalence of direct code and combinator code calledequivalence by canonicalizationthat does not rely on input-output examples or logical specifications. Moreover, our approach can repurpose existing compiler optimizations, leveraging decades of research from the programming languages community. We instantiated our new synthesis framework in two contexts: (i) higher-order functional combinators such asmapandfilterin the staticallytyped functional programming language Elm and (ii) high-performance numerical computing combinators provided by the NumPy library for Python. We implemented both instantiations in a tool calledCobblerand evaluated it on thousands of real programs to test the performance of the component-based refactoring framework in terms of execution time and output quality. Our work offers evidence that synthesis-backed refactoring can apply across a range of domains without specification beyond the input program. 
    more » « less
  3. Programming-by-example (PBE) is a synthesis paradigm that allows users to generate functions by simply providing input-output examples. While a promising interaction paradigm, synthesis is still too slow for realtime interaction and more widespread adoption. Existing approaches to PBE synthesis have used automated reasoning tools, such as SMT solvers, as well as works applying machine learning techniques. At its core, the automated reasoning approach relies on highly domain specific knowledge of programming languages. On the other hand, the machine learning approaches utilize the fact that when working with program code, it is possible to generate arbitrarily large training datasets. In this work, we propose a system for using machine learning in tandem with automated reasoning techniques to solve Syntax Guided Synthesis (SyGuS) style PBE problems. By preprocessing SyGuS PBE problems with a neural network, we can use a data driven approach to reduce the size of the search space, then allow automated reasoning-based solvers to more quickly find a solution analytically. Our system is able to run atop existing SyGuS PBE synthesis tools, decreasing the runtime of the winner of the 2019 SyGuS Competition for the PBE Strings track by 47.65% to outperform all of the competing tools. 
    more » « less
  4. Biscarat, C.; Campana, S.; Hegner, B.; Roiser, S.; Rovelli, C.I.; Stewart, G.A. (Ed.)
    Data analysis in HEP has often relied on batch systems and event loops; users are given a non-interactive interface to computing resources and consider data event-by-event. The “Coffea-casa” prototype analysis facility is an effort to provide users with alternate mechanisms to access computing resources and enable new programming paradigms. Instead of the command-line interface and asynchronous batch access, a notebook-based web interface and interactive computing is provided. Instead of writing event loops, the columnbased Coffea library is used. In this paper, we describe the architectural components of the facility, the services offered to end users, and how it integrates into a larger ecosystem for data access and authentication. 
    more » « less
  5. Lightweight syntactic analysis tools like Semgrep and Comby leverage the tree structure of code, making them more expressive than string and regex search. Unlike traditional language frameworks (e.g., ESLint) that analyze codebases via explicit syntax tree manipulations, these tools use query languages that closely resemble the source language. However, state-of-the-art matching techniques for these tools require queries to be complete and parsable snippets, which makes in-progress query specifications useless. We propose a new search architecture that relies only on tokenizing (not parsing) a query. We introduce a novel language and matching algorithm to support tree-aware wildcards on this architecture by building on tree automata. We also presentstsearch, a syntactic search tool leveraging our approach. In contrast to past work, our approach supports syntactic searcheven for previously unparsable queries.We show empirically that stsea rch can support all tokenizable queries, while still providing results comparable to Semgrep for existing queries. Our work offers evidence that lightweight syntactic code search can accept in-progress specifications, potentially improving support for interactive settings. CCS Concepts: •Software and its engineering→Formal language definitions;Software maintenance tools;•Information systems→Query representation;•Theory of computation→ Tree languages. 
    more » « less