skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Driving in the fog: Latency measurement, modeling, and optimization of LTE-based fog computing for smart vehicles
Fog computing has been advocated as an enabling technology for computationally intensive services in connected smart vehicles. Most existing works focus on analyzing and opti- mizing the queueing and workload processing latencies, ignoring the fact that the access latency between vehicles and fog/cloud servers can sometimes dominate the end-to-end service latency. This motivates the work in this paper, where we report a five- month urban measurement study of the wireless access latency between a connected vehicle and a fog computing system sup- ported by commercially available multi-operator LTE networks. We propose AdaptiveFog, a novel framework for autonomous and dynamic switching between different LTE operators that implement fog/cloud infrastructure. The main objective here is to maximize the service confidence level, defined as the probability that the tolerable latency threshold for each supported type of service can be guaranteed. AdaptiveFog has been implemented on a smart phone app, running on a moving vehicle. The app periodically measures the round-trip time between the vehicle and fog/cloud servers. An empirical spatial statistic model is established to characterize the spatial variation of the latency across the main driving routes of the city. To quantify the perfor- mance difference between different LTE networks, we introduce the weighted Kantorovich-Rubinstein (K-R) distance. An optimal policy is derived for the vehicle to dynamically switch between LTE operators’ networks while driving. Extensive analysis and simulation are performed based on our latency measurement dataset. Our results show that AdaptiveFog achieves around 30% and 50% improvement in the confidence level of fog and cloud latency, respectively.  more » « less
Award ID(s):
1813401 1822071 1731164
PAR ID:
10105602
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE SECON 2019 Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In recent years, the addition of billions of Internet of Thing (IoT) device spawned a massive demand for computing service near the edge of the network. Due to latency, limited mobility, and location awareness, cloud computing is not capable enough to serve these devices. As a result, the focus is shifting more towards distributed platform service to put ample computing power near the edge of the networks. Thus, paradigms such as Fog and Edge computing are gaining attention from researchers as well as business stakeholders. Fog computing is a new computing paradigm, which places computing nodes in between the Cloud and the end user to reduce latency and increase availability. As an emerging technology, Fog computing also brings newer security challenges for the stakeholders to solve. Before designing the security models for Fog computing, it is better to understand the existing threats to Fog computing. In this regard, a thorough threat model can significantly help to identify these threats. Threat modeling is a sophisticated engineering process by which a computer-based system is analyzed to discover security flaws. In this paper, we applied two popular security threat modeling processes - CIAA and STRIDE - to identify and analyze attackers, their capabilities and motivations, and a list of potential threats in the context of Fog computing. We posit that such a systematic and thorough discussion of a threat model for Fog computing will help security researchers and professionals to design secure and reliable Fog computing systems. 
    more » « less
  2. In recent years, the addition of billions of Internet of Thing (IoT) device spawned a massive demand for computing service near the edge of the network. Due to latency, limited mobility, and location awareness, cloud computing is not capable enough to serve these devices. As a result, the focus is shifting more towards distributed platform service to put ample com- puting power near the edge of the networks. Thus, paradigms such as Fog and Edge computing are gaining attention from researchers as well as business stakeholders. Fog computing is a new computing paradigm, which places computing nodes in between the Cloud and the end user to reduce latency and increase availability. As an emerging technology, Fog computing also brings newer security challenges for the stakeholders to solve. Before designing the security models for Fog computing, it is better to understand the existing threats to Fog computing. In this regard, a thorough threat model can significantly help to identify these threats. Threat modeling is a sophisticated engineering process by which a computer-based system is analyzed to discover security flaws. In this paper, we applied two popular security threat modeling processes – CIAA and STRIDE – to identify and analyze attackers, their capabilities and motivations, and a list of potential threats in the context of Fog computing. We posit that such a systematic and thorough discussion of a threat model for Fog computing will help security researchers and professionals to design secure and reliable Fog computing systems. 
    more » « less
  3. The proliferation of innovative mobile services such as augmented reality, networked gaming, and autonomous driving has spurred a growing need for low-latency access to computing resources that cannot be met solely by existing centralized cloud systems. Mobile Edge Computing (MEC) is expected to be an effective solution to meet the demand for low-latency services by enabling the execution of computing tasks at the network-periphery, in proximity to end-users. While a number of recent studies have addressed the problem of determining the execution of service tasks and the routing of user requests to corresponding edge servers, the focus has primarily been on the efficient utilization of computing resources, neglecting the fact that non-trivial amounts of data need to be stored to enable service execution, and that many emerging services exhibit asymmetric bandwidth requirements. To fill this gap, we study the joint optimization of service placement and request routing in MEC-enabled multi-cell networks with multidimensional (storage-computation-communication) constraints. We show that this problem generalizes several problems in literature and propose an algorithm that achieves close-to-optimal performance using randomized rounding. Evaluation results demonstrate that our approach can effectively utilize the available resources to maximize the number of requests served by low-latency edge cloud servers. 
    more » « less
  4. The vehicular fog is a relatively new computing paradigm where fog computing works with the vehicular network. It provides computation, storage, and location-aware services with low latency to the vehicles in close proximity. A vehicular fog network can be formed on-the-fly by adding underutilized or unused resources of nearby parked or moving vehicles. Interested vehicles can outsource their resources or data by being added to the vehicular fog network while maintaining proper security and privacy. Client vehicles can use these resources or services for performing computation-intensive tasks, storing data, or getting crowdsource reports through the proper secure and privacy-preserving communication channel. As most vehicular network applications are latency and location sensitive, fog is more suitable than the cloud because of the capability of performing calculations with low latency, location awareness, and the support of mobility. Architecture, security, and privacy models of vehicular fog are not well defined and widely accepted yet as it is in its early stage. In this paper, we have analyzed existing studies on vehicular fog to determine the requirements and issues related to the architecture, security, and privacy of vehicular fog computing. We have also identified and highlighted the open research problems in this promising area. 
    more » « less
  5. Systems for Internet of Things (IoT) have generated new requirements in all aspects of their development and deployment, including expanded Quality of Service (QoS) needs, enhanced resiliency of computing and connectivity, and the scalability to support massive numbers of end devices in a variety of applications. The research reported here concerns the development of a reliable and secure IoT/cyber physical system (CPS), providing network support for smart and connected communities, to be realized by means of distributed, secure, resilient Edge Cloud (EC) computing. This distributed EC system will be a network of geographically distributed EC nodes, brokering between end-devices and Backend Cloud (BC) servers. This paper focuses on three main aspects of the CPS: a) resource management in mobile cloud computing; b) information management in dynamic distributed databases; and c) biological-inspired intrusion detection system. 
    more » « less