Dynamic race detection based on the happens before (HB) partial order has now become the de facto approach to quickly identify data races in multi-threaded software. Most practical implementations for detecting these races use timestamps to infer causality between events and detect races based on these timestamps. Such an algorithm updates timestamps (stored in vector clocks) at every event in the execution, and is known to induce excessive overhead. Random sampling has emerged as a promising algorithmic paradigm to offset this overhead. It offers the promise of making sound race detection scalable. In this work we consider the task of designing an efficient sampling based race detector with low overhead for timestamping when the number of sampled events is much smaller than the total events in an execution. To solve this problem, we propose (1) a new notion of freshness timestamp, (2) a new data structure to store timestamps, and (3) an algorithm that uses a combination of them to reduce the cost of timestamping in sampling based race detection. Further, we prove that our algorithm is close to optimal --- the number of vector clock traversals is bounded by the number of sampled events and number of threads, and further, on any given dynamic execution, the cost of timestamping due to our algorithm is close to the amount of work any timestamping-based algorithm must perform on that execution, that is it is instance optimal. Our evaluation on real world benchmarks demonstrates the effectiveness of our proposed algorithm over prior timestamping algorithms that are agnostic to sampling.
more »
« less
Dynamic Race Detection with O(1) Samples
Happens before-based dynamic analysis is the go-to technique for detecting data races in large scale software projects due to the absence of false positive reports. However, such analyses are expensive since they employ expensive vector clock updates at each event, rendering them usable only for in-house testing. In this paper, we present a sampling-based, randomized race detector that processes onlyconstantly manyevents of the input trace even in the worst case. This is the firstsub-lineartime (i.e., running ino(n) time wherenis the length of the trace) dynamic race detection algorithm; previous sampling based approaches like run in linear time (i.e.,O(n)). Our algorithm is a property tester for -race detection — it is sound in that it never reports any false positive, and on traces that are far, with respect to hamming distance, from any race-free trace, the algorithm detects an -race with high probability. Our experimental evaluation of the algorithm and its comparison with state-of-the-art deterministic and sampling based race detectors shows that the algorithm does indeed have significantly low running time, and detects races quite often.
more »
« less
- Award ID(s):
- 2007428
- PAR ID:
- 10603483
- Publisher / Repository:
- Association for Computing Machinery (ACM)
- Date Published:
- Journal Name:
- Proceedings of the ACM on Programming Languages
- Volume:
- 7
- Issue:
- POPL
- ISSN:
- 2475-1421
- Format(s):
- Medium: X Size: p. 1308-1337
- Size(s):
- p. 1308-1337
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Concurrent programs are notoriously hard to write correctly, as scheduling nondeterminism introduces subtle errors that are both hard to detect and to reproduce. The most common concurrency errors are (data) races, which occur when memory-conflicting actions are executed concurrently. Consequently, considerable effort has been made towards developing efficient techniques for race detection. The most common approach is dynamic race prediction: given an observed, race-free trace σ of a concurrent program, the task is to decide whether events of σ can be correctly reordered to a trace σ * that witnesses a race hidden in σ. In this work we introduce the notion of sync(hronization)-preserving races. A sync-preserving race occurs in σ when there is a witness σ * in which synchronization operations (e.g., acquisition and release of locks) appear in the same order as in σ. This is a broad definition that strictly subsumes the famous notion of happens-before races. Our main results are as follows. First, we develop a sound and complete algorithm for predicting sync-preserving races. For moderate values of parameters like the number of threads, the algorithm runs in Õ( N ) time and space, where N is the length of the trace σ. Second, we show that the problem has a Ω( N /log 2 N ) space lower bound, and thus our algorithm is essentially time and space optimal. Third, we show that predicting races with even just a single reversal of two sync operations is NP-complete and even W1-hard when parameterized by the number of threads. Thus, sync-preservation characterizes exactly the tractability boundary of race prediction, and our algorithm is nearly optimal for the tractable side. Our experiments show that our algorithm is fast in practice, while sync-preservation characterizes races often missed by state-of-the-art methods.more » « less
-
Writing concurrent programs is notoriously hard due to scheduling non-determinism. The most common concurrency bugs are data races, which are accesses to a shared resource that can be executed concurrently. Dynamic data-race prediction is the most standard technique for detecting data races: given an observed, data-race-free trace t, the task is to determine whether t can be reordered to a trace t* that exposes a data-race. Although the problem has received significant practical attention for over three decades, its complexity has remained elusive. In this work, we address this lacuna, identifying sources of intractability and conditions under which the problem is efficiently solvable. Given a trace t of size n over k threads, our main results are as follows. First, we establish a general O(k · n2·(k-1) upper-bound, as well as an O(nk) upper-bound when certain parameters of t are constant. In addition, we show that the problem is NP-hard and even W[1]-hard parameterized by k, and thus unlikely to be fixed-parameter tractable. Second, we study the problem over acyclic communication topologies, such as server-clients hierarchies. We establish an O(k2 · d · n2 · log n) upper-bound, where d is the number of shared variables accessed in t. In addition, we show that even for traces with k = 2 threads, the problem has no O(n2-ϵ) algorithm under the Orthogonal Vectors conjecture. Since any trace with 2 threads defines an acyclic topology, our upper-bound for this case is optimal up to polynomial improvements for up to moderate values of k and d. Finally, motivated by existing heuristics, we study a distance-bounded version of the problem, where the task is to expose a data race by a witness trace that is similar to t. We develop an algorithm that works in O(n) time when certain parameters of t are constant.more » « less
-
null (Ed.)We present an $$\tilde O(m+n^{1.5})$$-time randomized algorithm for maximum cardinality bipartite matching and related problems (e.g. transshipment, negative-weight shortest paths, and optimal transport) on $$m$$-edge, $$n$$-node graphs. For maximum cardinality bipartite matching on moderately dense graphs, i.e. $$m = \Omega(n^{1.5})$$, our algorithm runs in time nearly linear in the input size and constitutes the first improvement over the classic $$O(m\sqrt{n})$$-time [Dinic 1970; Hopcroft-Karp 1971; Karzanov 1973] and $$\tilde O(n^\omega)$$-time algorithms [Ibarra-Moran 1981] (where currently $$\omega\approx 2.373$$). On sparser graphs, i.e. when $$m = n^{9/8 + \delta}$$ for any constant $$\delta>0$$, our result improves upon the recent advances of [Madry 2013] and [Liu-Sidford 2020b, 2020a] which achieve an $$\tilde O(m^{4/3+o(1)})$$ runtime. We obtain these results by combining and advancing recent lines of research in interior point methods (IPMs) and dynamic graph algorithms. First, we simplify and improve the IPM of [v.d.Brand-Lee-Sidford-Song 2020], providing a general primal-dual IPM framework and new sampling-based techniques for handling infeasibility induced by approximate linear system solvers. Second, we provide a simple sublinear-time algorithm for detecting and sampling high-energy edges in electric flows on expanders and show that when combined with recent advances in dynamic expander decompositions, this yields efficient data structures for maintaining the iterates of both [v.d.Brand~et~al.] and our new IPMs. Combining this general machinery yields a simpler $$\tilde O(n \sqrt{m})$$ time algorithm for matching based on the logarithmic barrier function, and our state-of-the-art $$\tilde O(m+n^{1.5})$$ time algorithm for matching based on the [Lee-Sidford 2014] barrier (as regularized in [v.d.Brand~et~al.]).more » « less
-
Ali, Karim; Salvaneschi, Guido (Ed.)Much of the past work on dynamic data-race and determinacy-race detection algorithms for task parallelism has focused on structured parallelism with fork-join constructs and, more recently, with future constructs. This paper addresses the problem of dynamic detection of data-races and determinacy-races in task-parallel programs with promises, which are more general than fork-join constructs and futures. The motivation for our work is twofold. First, promises have now become a mainstream synchronization construct, with their inclusion in multiple languages, including C++, JavaScript, and Java. Second, past work on dynamic data-race and determinacy-race detection for task-parallel programs does not apply to programs with promises, thereby identifying a vital need for this work. This paper makes multiple contributions. First, we introduce a featherweight programming language that captures the semantics of task-parallel programs with promises and provides a basis for formally defining determinacy using our semantics. This definition subsumes functional determinacy (same output for same input) and structural determinacy (same computation graph for same input). The main theoretical result shows that the absence of data races is sufficient to guarantee determinacy with both properties. We are unaware of any prior work that established this result for task-parallel programs with promises. Next, we introduce a new Dynamic Race Detector for Promises that we call DRDP. DRDP is the first known race detection algorithm that executes a task-parallel program sequentially without requiring the serial-projection property; this is a critical requirement since programs with promises do not satisfy the serial-projection property in general. Finally, the paper includes experimental results obtained from an implementation of DRDP. The results show that, with some important optimizations introduced in our work, the space and time overheads of DRDP are comparable to those of more restrictive race detection algorithms from past work. To the best of our knowledge, DRDP is the first determinacy race detector for task-parallel programs with promises.more » « less
An official website of the United States government
