skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 6, 2026

Title: Parameter Selection by GCV and a \(\boldsymbol {\chi^2}\) Test within Iterative Methods for \(\boldsymbol{\ell_1}\)-Regularized Inverse Problems
l1 regularization is used to preserve edges or enforce sparsity in a solution to an inverse problem. We investigate the split Bregman and the majorization-minimization iterative methods that turn this nonsmooth minimization problem into a sequence of steps that include solving an -regularized minimization problem. We consider selecting the regularization parameter in the inner generalized Tikhonov regularization problems that occur at each iteration in these iterative methods. The generalized cross validation method and chi2 degrees of freedom test are extended to these inner problems. In particular, for the chi2 test this includes extending the result for problems in which the regularization operator has more rows than columns and showing how to use the -weighted generalized inverse to estimate prior information at each inner iteration. Numerical experiments for image deblurring problems demonstrate that it is more effective to select the regularization parameter automatically within the iterative schemes than to keep it fixed for all iterations. Moreover, an appropriate regularization parameter can be estimated in the early iterations and fixed to convergence.  more » « less
Award ID(s):
2152704 1913136
PAR ID:
10603933
Author(s) / Creator(s):
; ;
Publisher / Repository:
SIAM Philadelphia
Date Published:
Journal Name:
SIAM Journal on Scientific Computing
ISSN:
1064-8275
Page Range / eLocation ID:
S112 to S134
Subject(s) / Keyword(s):
l1 regularization, split Bregman, majorization-minimization, GCV, chi 2 degrees of freedom
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Discrete ill-posed inverse problems arise in various areas of science and engineering. The presence of noise in the data often makes it difficult to compute an accurate approximate solution. To reduce the sensitivity of the computed solution to the noise, one replaces the original problem by a nearby well-posed minimization problem, whose solution is less sensitive to the noise in the data than the solution of the original problem. This replacement is known as regularization. We consider the situation when the minimization problem consists of a fidelity term, that is defined in terms of a p -norm, and a regularization term, that is defined in terms of a q -norm. We allow 0 < p , q ≤ 2. The relative importance of the fidelity and regularization terms is determined by a regularization parameter. This paper develops an automatic strategy for determining the regularization parameter for these minimization problems. The proposed approach is based on a new application of generalized cross validation. Computed examples illustrate the performance of the method proposed. 
    more » « less
  2. null (Ed.)
    In this article, Momentum Iterative Hessian Sketch (M-IHS) techniques, a group of solvers for large scale linear Least Squares (LS) problems, are proposed and analyzed in detail. The proposed techniques are obtained by incorporating the Heavy Ball Acceleration into the Iterative Hessian Sketch algorithm and they provide significant improvements over the randomized preconditioning techniques. Through the error analyses of the M-IHS variants, lower bounds on the sketch size for various randomized distributions to converge at a pre-determined rate with a constant probability are established. The bounds present the best results in the current literature for obtaining a solution approximation and they suggest that the sketch size can be chosen proportional to the statistical dimension of the regularized problem regardless of the size of the coefficient matrix. The statistical dimension is always smaller than the rank and it gets smaller as the regularization parameter increases. By using approximate solvers along with the iterations, the M-IHS variants are capable of avoiding all matrix decompositions and inversions, which is one of the main advantages over the alternative solvers such as the Blendenpik and the LSRN. Similar to the Chebyshev Semi-iterations, the M-IHS variants do not use any inner products and eliminate the corresponding synchronizations steps in hierarchical or distributed memory systems, yet the M-IHS converges faster than the Chebyshev Semi-iteration based solvers 
    more » « less
  3. In this paper, we present a framework to learn illumination patterns to improve the quality of signal recovery for coded diffraction imaging. We use an alternating minimization-based phase retrieval method with a fixed number of iterations as the iterative method. We represent the iterative phase retrieval method as an unrolled network with a fixed number of layers where each layer of the network corresponds to a single step of iteration, and we minimize the recovery error by optimizing over the illumination patterns. Since the number of iterations/layers is fixed, the recovery has a fixed computational cost. Extensive experimental results on a variety of datasets demonstrate that our proposed method significantly improves the quality of image reconstruction at a fixed computational cost with illumination patterns learned only using a small number of training images. 
    more » « less
  4. Iterative neural networks (INN) are rapidly gaining attention for solving inverse problems in imaging, image processing, and computer vision. INNs combine regression NNs and an iterative model-based image reconstruction (MBIR) algorithm, often leading to both good generalization capability and outperforming reconstruction quality over existing MBIR optimization models. This paper proposes the first fast and convergent INN architecture, Momentum-Net, by generalizing a block-wise MBIR algorithm that uses momentum and majorizers with regression NNs. For fast MBIR, Momentum-Net uses momentum terms in extrapolation modules, and noniterative MBIR modules at each iteration by using majorizers, where each iteration of Momentum-Net consists of three core modules: image refining, extrapolation, and MBIR. Momentum-Net guarantees convergence to a fixed-point for general differentiable (non)convex MBIR functions (or data-fit terms) and convex feasible sets, under two asymptomatic conditions. To consider data-fit variations across training and testing samples, we also propose a regularization parameter selection scheme based on the “spectral spread” of majorization matrices. Numerical experiments for light-field photography using a focal stack and sparse-view computational tomography demonstrate that, given identical regression NN architectures, Momentum-Net significantly improves MBIR speed and accuracy over several existing INNs; it significantly improves reconstruction quality compared to a state-of-the-art MBIR method in each application 
    more » « less
  5. In this article, we propose, analyze and demonstrate a dynamic momentum method to accelerate power and inverse power iterations with minimal computational overhead. The method can be applied to real diagonalizable matrices, is provably convergent with acceleration in the symmetric case, and does not require a priori spectral knowledge. We review and extend background results on previously developed static momentum accelerations for the power iteration through the connection between the momentum accelerated iteration and the standard power iteration applied to an augmented matrix. We show that the augmented matrix is defective for the optimal parameter choice. We then present our dynamic method which updates the momentum parameter at each iteration based on the Rayleigh quotient and two previous residuals. We present convergence and stability theory for the method by considering a power‐like method consisting of multiplying an initial vector by a sequence of augmented matrices. We demonstrate the developed method on a number of benchmark problems, and see that it outperforms both the power iteration and often the static momentum acceleration with optimal parameter choice. Finally, we present and demonstrate an explicit extension of the algorithm to inverse power iterations. 
    more » « less