skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2026

Title: Coupled piezoelastic airfoil oscillators: Nonlinear oscillations
Limit-cycle oscillations of bodies with airfoil cross-sections is a subject of keen interest for engineering applications. In systems consisting of multiple such closely spaced bodies, the aerodynamic interactions amongst two or more such bodies can influence the system response. The nature of these interactions is examined with respect to variations in external parameters such as freestream speed and system parameters such as inter-oscillator spacing and the number of airfoil oscillators. By using a co-simulation scheme, which consists of a reduced order three degree-of-freedom piezostructural system and an unsteady vortex lattice method fluid solver, the effects of these parameters on the resulting aerodynamic loads on the system, the overall dynamic response, and the critical flutter speed are studied. In a three-airfoil oscillator system, the effect of the position of the inner airfoil oscillator is extensively studied with a focus on characterizing airfoil interactions and airfoil-wake interactions. For different parallel configurations, studies of bifurcations with respect to different control parameters are conducted.  more » « less
Award ID(s):
2131594
PAR ID:
10603952
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of Sound and Vibration
Volume:
618
Issue:
PB
ISSN:
0022-460X
Page Range / eLocation ID:
119226
Subject(s) / Keyword(s):
Airfoil oscillator arrays Energy harvesting Flutter Nonlinear oscillations
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the computational resources becoming available, data-driven methods have emerged as powerful means for equation discovery and model construction. Sparse regression methods such as SINDy (Sparse Identification for Nonlinear Dynamical Systems) can be used for developing reduced-order models of nonlinear systems. In this study, the authors examine how SINDy can be used for developing low-dimensional models for airfoil systems, which experience unsteady aerodynamic loads and flutter instabilities. For a system of multiple closely spaced airfoil oscillators, analytical models are not readily available to determine flutter instabilities, and one has to take recourse to experimental and numerical means. In this work, as a starting point, data collected through simulations of unsteady aerodynamics of a single airfoil oscillator system are considered and a reduced-order model is constructed based on this data. 
    more » « less
  2. Demand is expected to accelerate for autonomous air vehicles that transport people and goods, making wind sensors on these vehicles and in the air space where they operate critical to ensure safe control of many simultaneous take-offs and landings. Conventional anemometers such as pitot tubes as well as rotating, heated-element, acoustic, and drag technologies have drawbacks for small and micro-aerial vehicles including high power consumption, high aerodynamic drag, complex signal processing, and high cost. This paper presents an airfoil-shaped anemometer that provides low drag while integrating sensors for measuring wind speed and direction on tethered kites, balloons, and drones. Wind speed is measured by an integrated dual-layer capacitive pressure sensor with a polyvinylidene fluoride (PVDF) diaphragm while wind direction is measured by a 3D digital magnetometer that senses the orientation of the airfoil relative to the earth’s magnetic field. A model is presented for a dual-layer capacitive sensor and validated through quasistatic pressure chamber testing. The capacitive sensor as well as a commercial digital magnetometer are integrated into a NACA 2412 profile airfoil and tested in a laboratory-scale wind tunnel. The capacitive sensor provides a sensitivity of 1.84 fF m 2 s −2 and the airfoil exhibits a unique stable angle-of-attack to within ±2° as measured by the magnetometer. 
    more » « less
  3. This study presents the first 3D two-way coupled fluid structure interaction (FSI) simulation of a hybrid anechoic wind tunnel (HAWT) test section with modeling all important effects, such as turbulence, Kevlar wall porosity and deflection, and reveals for the first time the complete 3D flow structure associated with a lifting model placed into a HAWT. The Kevlar deflections are captured using finite element analysis (FEA) with shell elements operated under a membrane condition. Three-dimensional RANS CFD simulations are used to resolve the flow field. Aerodynamic experimental results are available and are compared against the FSI results. Quantitatively, the pressure coefficients on the airfoil are in good agreement with experimental results. The lift coefficient was slightly underpredicted while the drag was overpredicted by the CFD simulations. The flow structure downstream of the airfoil showed good agreement with the experiments, particularly over the wind tunnel walls where the Kevlar windows interact with the flow field. A discrepancy between previous experimental observations and juncture flow-induced vortices at the ends of the airfoil is found to stem from the limited ability of turbulence models. The qualitative behavior of the flow, including airfoil pressures and cross-sectional flow structure is well captured in the CFD. From the structural side, the behavior of the Kevlar windows and the flow developing over them is closely related to the aerodynamic pressure field induced by the airfoil. The Kevlar displacement and the transpiration velocity across the material is dominated by flow blockage effects, generated aerodynamic lift, and the wake of the airfoil. The airfoil wake increases the Kevlar window displacement, which was previously not resolved by two-dimensional panel-method simulations. The static pressure distribution over the Kevlar windows is symmetrical about the tunnel mid-height, confirming a dominantly two-dimensional flow field. 
    more » « less
  4. Vortex-induced vibrations are oscillatory motions experienced by a body interacting with an external flow. These vibrations can be harnessed for energy harvesting purpose. A cantilever beam with a cylinder attached at the free end represents the bluff body oscillator of interest here. Vortex-induced vibrations of two adjacent bluff-body oscillators are studied by varying the transverse spacing between the oscillators. A finite element model of the system is used to numerically study the associated fluid–structure interactions. For the case with two oscillators, the effect of varying the oscillator spacing on the system response is studied. Dynamic mode decomposition is used for extracting coherent spatio-temporal structures in pressure fields. The system spectral response for the single oscillator and coupled oscillators cases are studied to examine the system dynamics. The obtained numerical results for the system dynamics are found to agree with previously reported experimental results in the literature. The present work can form a basis for constructing computational models of fluid coupled bluff-body oscillators and configuring arrays of bluff-body oscillators for energy harvesting. 
    more » « less
  5. Geometric control theory is the application of differential geometry to the study of nonlinear dynamical systems. This control theory permits an analytical study of nonlinear interactions between control inputs, such as symmetry breaking or force and motion generation in unactuated directions. This paper studies the unsteady aerodynamics of a harmonically pitching–plunging airfoil in a geometric control framework. The problem is formulated using the Beddoes–Leishman model, a semi-empirical state space model that characterizes the unsteady lift and drag forces of a two-dimensional airfoil. In combination with the averaging theorem, the application of a geometric control formulation to the problem enables an analytical study of the nonlinear dynamics behind the unsteady aerodynamic forces. The results show lift enhancement when oscillating near stall and thrust generation in the post-stall flight regime, with the magnitude of these force generation mechanisms depending on the parameters of motion. These findings demonstrate the potential of geometric control theory as a heuristic tool for the identification and discovery of unconventional phenomena in unsteady flows. 
    more » « less