skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MiniKers: Interaction-Powered Smart Environment Automation
Automating operations of objects has made life easier and more convenient for billions of people, especially those with limited motor capabilities. On the other hand, even able-bodied users might not always be able to perform manual operations (e.g., both hands are occupied), and manual operations might be undesirable for hygiene purposes (e.g., contactless devices). As a result, automation systems like motion-triggered doors, remote-control window shades, contactless toilet lids have become increasingly popular in private and public environments. Yet, these systems are hampered by complex building wiring or short battery lifetimes, negating their positive benefits for accessibility, energy saving, healthcare, and other domains. In this paper we explore how these types of objects can be powered in perpetuity by the energy generated from a unique energy source - user interactions, specifically, the manual manipulations of objects by users who can afford them when they can afford them. Our assumption is that users' capabilities for object operations are heterogeneous, there are desires for both manual and automatic operations in most environments, and that automatic operations are often not needed as frequently - for example, an automatic door in a public space is often manually opened many times before a need for automatic operation shows up. The energy harvested by those manual operations would be sufficient to power that one automatic operation. We instantiate this idea by upcycling common everyday objects with devices which have various mechanical designs powered by a general-purpose backbone embedded system. We call these devices, MiniKers. We built a custom driver circuit that can enable motor mechanisms to toggle between generating powers (i.e., manual operation) and actuating objects (i.e., automatic operation). We designed a wide variety of mechanical mechanisms to retrofit existing objects and evaluated our system with a 48-hour deployment study, which proves the efficacy of MiniKers as well as shedding light into this people-as-power approach as a feasible solution to address energy needed for smart environment automation.  more » « less
Award ID(s):
2228982
PAR ID:
10606848
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Association for Computing Machinery (ACM)
Date Published:
Journal Name:
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Volume:
6
Issue:
3
ISSN:
2474-9567
Format(s):
Medium: X Size: p. 1-22
Size(s):
p. 1-22
Sponsoring Org:
National Science Foundation
More Like this
  1. The increase of distributed embedded systems has enabled pervasive sensing, actuation, and information displays across buildings and surrounding environments, yet also entreats huge cost expenditure for energy and human labor for maintenance. Our daily interactions, from opening a window to closing a drawer to twisting a doorknob, are great potential sources of energy but are often neglected. Existing commercial devices to harvest energy from these ambient sources are unaffordable, and DIY solutions are left with inaccessibility for non-experts preventing fully imbuing daily innovations in end-users. We present E3D, an end-to-end fabrication toolkit to customize self-powered smart devices at low cost. We contribute to a taxonomy of everyday kinetic activities that are potential sources of energy, a library of parametric mechanisms to harvest energy from manual operations of kinetic objects, and a holistic design system for end-user developers to capture design requirements by demonstrations then customize augmentation devices to harvest energy that meets unique lifestyle. 
    more » « less
  2. Abstract Tweezers based on optical, electric, magnetic, and acoustic fields have shown great potential for contactless object manipulation. However, current tweezers designed for manipulating millimeter‐sized objects such as droplets, particles, and small animals exhibit limitations in translation resolution, range, and path complexity. Here, a novel acoustic vortex tweezers system is introduced, which leverages a unique airborne acoustic vortex end effector integrated with a three‐degree‐of‐freedom (DoF) linear motion stage, for enabling contactless, multi‐mode, programmable manipulation of millimeter‐sized objects. The acoustic vortex end effector utilizes a cascaded circular acoustic array, which is portable and battery‐powered, to generate an acoustic vortex with a ring‐shaped energy pattern. The vortex applies acoustic radiation forces to trap and spin an object at its center, simultaneously protecting this object by repelling other materials away with its high‐energy ring. Moreover, The vortex tweezers system facilitates contactless, multi‐mode, programmable object surfing, as demonstrated in experiments involving trapping, repelling, and spinning particles, translating particles along complex paths, guiding particles around barriers, translating and rotating droplets containing zebrafish larvae, and merging droplets. With these capabilities, It is anticipated that the tweezers system will become a valuable tool for the automated, contactless handling of droplets, particles, and bio‐samples in biomedical and biochemical research. 
    more » « less
  3. Underwater wireless communication and network- ing are becoming key enablers of a number of critical marine and underwater applications. Experimentation is underway, in controlled environments as well as at sea, that concerns the deployment of several underwater devices providing wireless communication capabilities to sensors of different nature. Con- trolling the deployment at sea of these devices, remotely and efficiently, is paramount for enabling expedite testing of hardware and protocol development. To address this need, this paper presents the design, development, and testing of a Smart Buoy for real-time remote access to underwater devices and for provision of power and extended computational capabilities. Experimental results are shown concerning the time needed to connect with the Smart Buoy, the power consumption of its operations, and the energy harvesting intake (via solar panels) in time. We also investigate the buoy lifetime when powered by solar panels and supporting acoustic modems over varying traffic scenarios. 
    more » « less
  4. null (Ed.)
    AI applications powered by deep learning inference are increasingly run natively on edge devices to provide better interactive user experience. This often necessitates fitting a model originally designed and trained in the cloud to edge devices with a range of hardware capabilities, which so far has relied on time-consuming manual effort. In this paper, we quantify the challenges of manually generating a large number of compressed models and then build a system framework, Mistify, to automatically port a cloud-based model to a suite of models for edge devices targeting various points in the design space. Mistify adds an intermediate “layer” that decouples the model design and deployment phases. By exposing configuration APIs to obviate the need for code changes deeply embedded into the original model, Mistify hides run-time issues from model designers and hides the model internals from model users, hence reducing the expertise needed in either. For better scalability, Mistify consolidates multiple model tailoring requests to minimize repeated computation. Further, Mistify leverages locally available edge data in a privacy-aware manner, and performs run-time model adaptation to provide scalable edge support and accurate inference results. Extensive evaluation shows that Mistify reduces the DNN porting time needed by over 10x to cater to a wide spectrum of edge deployment scenarios, incurring orders of magnitude less manual effort. 
    more » « less
  5. Emerging smart home platforms, which interface with a variety of physical devices and support third-party application development, currently use permission models inspired by smartphone operating systems—the permission to access operations are separated by the device which performs them instead of their functionality. Unfortunately, this leads to two issues: (1) apps that do not require access to all of the granted device operations have overprivileged access to them, (2) apps might pose a higher risk to users than needed because physical device operations are fundamentally risk-asymmetric — “door.unlock” provides access to burglars, and “door.lock” can potentially lead to getting locked out. Overprivileged apps with access to mixed-risk operations only increase the potential for damage. We present Tyche, a secure development methodology that leverages the risk-asymmetry in physical device operations to limit the risk that apps pose to smart home users, without increasing the user’s decision overhead. Tyche introduces the notion of risk-based permissions for IoT systems. When using risk-based permissions, device operations are grouped into units of similar risk, and users grant apps access to devices at that risk-based granularity. Starting from a set of permissions derived from the popular Samsung SmartThings platform, we conduct a user study involving domain-experts and Mechanical Turk users to compute a relative ranking of risks associated with device operations. We find that user assessment of risk closely matches that of domain experts. Using this insight, we define risk-based groupings of device operations, and apply it to existing SmartThings apps. We show that existing apps can reduce access to high-risk operations by 60% while remaining operable. 
    more » « less