BACKGROUND:Classification of perioperative risk is important for patient care, resource allocation, and guiding shared decision-making. Using discriminative features from the electronic health record (EHR), machine-learning algorithms can create digital phenotypes among heterogenous populations, representing distinct patient subpopulations grouped by shared characteristics, from which we can personalize care, anticipate clinical care trajectories, and explore therapies. We hypothesized that digital phenotypes in preoperative settings are associated with postoperative adverse events including in-hospital and 30-day mortality, 30-day surgical redo, intensive care unit (ICU) admission, and hospital length of stay (LOS). METHODS:We identified all laminectomies, colectomies, and thoracic surgeries performed over a 9-year period from a large hospital system. Seventy-seven readily extractable preoperative features were first selected from clinical consensus, including demographics, medical history, and lab results. Three surgery-specific datasets were built and split into derivation and validation cohorts using chronological occurrence. Consensusk-means clustering was performed independently on each derivation cohort, from which phenotypes’ characteristics were explored. Cluster assignments were used to train a random forest model to assign patient phenotypes in validation cohorts. We reconducted descriptive analyses on validation cohorts to confirm the similarity of patient characteristics with derivation cohorts, and quantified the association of each phenotype with postoperative adverse events by using the area under receiver operating characteristic curve (AUROC). We compared our approach to American Society of Anesthesiologists (ASA) alone and investigated a combination of our phenotypes with the ASA score. RESULTS:A total of 7251 patients met inclusion criteria, of which 2770 were held out in a validation dataset based on chronological occurrence. Using segmentation metrics and clinical consensus, 3 distinct phenotypes were created for each surgery. The main features used for segmentation included urgency of the procedure, preoperative LOS, age, and comorbidities. The most relevant characteristics varied for each of the 3 surgeries. Low-risk phenotype alpha was the most common (2039 of 2770, 74%), while high-risk phenotype gamma was the rarest (302 of 2770, 11%). Adverse outcomes progressively increased from phenotypes alpha to gamma, including 30-day mortality (0.3%, 2.1%, and 6.0%, respectively), in-hospital mortality (0.2%, 2.3%, and 7.3%), and prolonged hospital LOS (3.4%, 22.1%, and 25.8%). When combined with the ASA score, digital phenotypes achieved higher AUROC than the ASA score alone (hospital mortality: 0.91 vs 0.84; prolonged hospitalization: 0.80 vs 0.71). CONCLUSIONS:For 3 frequently performed surgeries, we identified 3 digital phenotypes. The typical profiles of each phenotype were described and could be used to anticipate adverse postoperative events. 
                        more » 
                        « less   
                    This content will become publicly available on January 1, 2026
                            
                            Heterogeneity in the Effect of Early Goal-Directed Therapy for Septic Shock: A Secondary Analysis of Two Multicenter International Trials
                        
                    
    
            OBJECTIVES:The optimal approach for resuscitation in septic shock remains unclear despite multiple randomized controlled trials (RCTs). Our objective was to investigate whether previously uncharacterized variation across individuals in their response to resuscitation strategies may contribute to conflicting average treatment effects in prior RCTs. DESIGN:We randomly split study sites from the Australian Resuscitation of Sepsis Evaluation (ARISE) and Protocolized Care for Early Septic Shock (ProCESS) trials into derivation and validation cohorts. We trained machine learning models to predict individual absolute risk differences (iARDs) in 90-day mortality in derivation cohorts and tested for heterogeneity of treatment effect (HTE) in validation cohorts and swapped these cohorts in sensitivity analyses. We fit the best-performing model in a combined dataset to explore roles of patient characteristics and individual components of early goal-directed therapy (EGDT) to determine treatment responses. SETTING:Eighty-one sites in Australia, New Zealand, Hong Kong, Finland, Republic of Ireland, and the United States. PATIENTS:Adult patients presenting to the emergency department with severe sepsis or septic shock. INTERVENTIONS:EGDT vs. usual care. MEASUREMENTS AND MAIN RESULTS:A local-linear random forest model performed best in predicting iARDs. In the validation cohort, HTE was confirmed, evidenced by an interaction between iARD prediction and treatment (p< 0.001). When patients were grouped based on predicted iARDs, treatment response increased from the lowest to the highest quintiles (absolute risk difference [95% CI], –8% [–19% to 4%] and relative risk reduction, 1.34 [0.89–2.01] in quintile 1 suggesting harm from EGDT, and 12% [1–23%] and 0.64 [0.42–0.96] in quintile 5 suggesting benefit). Sensitivity analyses showed similar findings. Pre-intervention albumin contributed the most to HTE. Analyses of individual EGDT components were inconclusive. CONCLUSIONS:Treatment response to EGDT varied across patients in two multicenter RCTs with large benefits for some patients while others were harmed. Patient characteristics, including albumin, were most important in identifying HTE. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2310217
- PAR ID:
- 10607875
- Publisher / Repository:
- Society of Critical Care Medicine
- Date Published:
- Journal Name:
- Critical Care Medicine
- Volume:
- 53
- Issue:
- 1
- ISSN:
- 0090-3493
- Page Range / eLocation ID:
- e4 to e14
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Background Sepsis is a heterogeneous syndrome, and the identification of clinical subphenotypes is essential. Although organ dysfunction is a defining element of sepsis, subphenotypes of differential trajectory are not well studied. We sought to identify distinct Sequential Organ Failure Assessment (SOFA) score trajectory-based subphenotypes in sepsis. Methods We created 72-h SOFA score trajectories in patients with sepsis from four diverse intensive care unit (ICU) cohorts. We then used dynamic time warping (DTW) to compute heterogeneous SOFA trajectory similarities and hierarchical agglomerative clustering (HAC) to identify trajectory-based subphenotypes. Patient characteristics were compared between subphenotypes and a random forest model was developed to predict subphenotype membership at 6 and 24 h after being admitted to the ICU. The model was tested on three validation cohorts. Sensitivity analyses were performed with alternative clustering methodologies. Results A total of 4678, 3665, 12,282, and 4804 unique sepsis patients were included in development and three validation cohorts, respectively. Four subphenotypes were identified in the development cohort: Rapidly Worsening ( n = 612, 13.1%), Delayed Worsening ( n = 960, 20.5%), Rapidly Improving ( n = 1932, 41.3%), and Delayed Improving ( n = 1174, 25.1%). Baseline characteristics, including the pattern of organ dysfunction, varied between subphenotypes. Rapidly Worsening was defined by a higher comorbidity burden, acidosis, and visceral organ dysfunction. Rapidly Improving was defined by vasopressor use without acidosis. Outcomes differed across the subphenotypes, Rapidly Worsening had the highest in-hospital mortality (28.3%, P -value < 0.001), despite a lower SOFA (mean: 4.5) at ICU admission compared to Rapidly Improving (mortality:5.5%, mean SOFA: 5.5). An overall prediction accuracy of 0.78 (95% CI, [0.77, 0.8]) was obtained at 6 h after ICU admission, which increased to 0.87 (95% CI, [0.86, 0.88]) at 24 h. Similar subphenotypes were replicated in three validation cohorts. The majority of patients with sepsis have an improving phenotype with a lower mortality risk; however, they make up over 20% of all deaths due to their larger numbers. Conclusions Four novel, clinically-defined, trajectory-based sepsis subphenotypes were identified and validated. Identifying trajectory-based subphenotypes has immediate implications for the powering and predictive enrichment of clinical trials. Understanding the pathophysiology of these differential trajectories may reveal unanticipated therapeutic targets and identify more precise populations and endpoints for clinical trials.more » « less
- 
            Abstract ObjectivesTo quantify differences between (1) stratifying patients by predicted disease onset risk alone and (2) stratifying by predicted disease onset risk and severity of downstream outcomes. We perform a case study of predicting sepsis. Materials and MethodsWe performed a retrospective analysis using observational data from Michigan Medicine at the University of Michigan (U-M) between 2016 and 2020 and the Beth Israel Deaconess Medical Center (BIDMC) between 2008 and 2012. We measured the correlation between the estimated sepsis risk and the estimated effect of sepsis on mortality using Spearman’s correlation. We compared patients stratified by sepsis risk with patients stratified by sepsis risk and effect of sepsis on mortality. ResultsThe U-M and BIDMC cohorts included 7282 and 5942 ICU visits; 7.9% and 8.1% developed sepsis, respectively. Among visits with sepsis, 21.9% and 26.3% experienced mortality at U-M and BIDMC. The effect of sepsis on mortality was weakly correlated with sepsis risk (U-M: 0.35 [95% CI: 0.33-0.37], BIDMC: 0.31 [95% CI: 0.28-0.34]). High-risk patients identified by both stratification approaches overlapped by 66.8% and 52.8% at U-M and BIDMC, respectively. Accounting for risk of mortality identified an older population (U-M: age = 66.0 [interquartile range—IQR: 55.0-74.0] vs age = 63.0 [IQR: 51.0-72.0], BIDMC: age = 74.0 [IQR: 61.0-83.0] vs age = 68.0 [IQR: 59.0-78.0]). DiscussionPredictive models that guide selective interventions ignore the effect of disease on downstream outcomes. Reformulating patient stratification to account for the estimated effect of disease on downstream outcomes identifies a different population compared to stratification on disease risk alone. ConclusionModels that predict the risk of disease and ignore the effects of disease on downstream outcomes could be suboptimal for stratification.more » « less
- 
            Abstract BackgroundSepsis is a highly heterogeneous syndrome, which has hindered the development of effective therapies. This has prompted investigators to develop a precision medicine approach aimed at identifying biologically homogenous subgroups of patients with septic shock and critical illnesses. Transcriptomic analysis can identify subclasses derived from differences in underlying pathophysiological processes that may provide the basis for new targeted therapies. The goal of this study was to elucidate pathophysiological pathways and identify pediatric septic shock subclasses based on whole blood RNA expression profiles. MethodsThe subjects were critically ill children with cardiopulmonary failure who were a part of a prospective randomized insulin titration trial to treat hyperglycemia. Genome-wide expression profiling was conducted using RNA sequencing from whole blood samples obtained from 46 children with septic shock and 52 mechanically ventilated noninfected controls without shock. Patients with septic shock were allocated to subclasses based on hierarchical clustering of gene expression profiles, and we then compared clinical characteristics, plasma inflammatory markers, cell compositions using GEDIT, and immune repertoires using Imrep between the two subclasses. ResultsPatients with septic shock depicted alterations in innate and adaptive immune pathways. Among patients with septic shock, we identified two subtypes based on gene expression patterns. Compared with Subclass 2, Subclass 1 was characterized by upregulation of innate immunity pathways and downregulation of adaptive immunity pathways. Subclass 1 had significantly worse clinical outcomes despite the two classes having similar illness severity on initial clinical presentation. Subclass 1 had elevated levels of plasma inflammatory cytokines and endothelial injury biomarkers and demonstrated decreased percentages of CD4 T cells and B cells and less diverse T cell receptor repertoires. ConclusionsTwo subclasses of pediatric septic shock patients were discovered through genome-wide expression profiling based on whole blood RNA sequencing with major biological and clinical differences.Trial RegistrationThis is a secondary analysis of data generated as part of the observational CAF-PINT ancillary of the HALF-PINT study (NCT01565941). Registered March 29, 2012.more » « less
- 
            Abstract Sepsis is responsible for the highest economic and mortality burden in critical care settings around the world, prompting the World Health Organization in 2018 to designate it as a global health priority. Despite its high universal prevalence and mortality rate, a disproportionately low amount of sponsored research funding is directed toward diagnosis and treatment of sepsis, when early treatment has been shown to significantly improve survival. Additionally, current technologies and methods are inadequate to provide an accurate and timely diagnosis of septic patients in multiple clinical environments. For improved patient outcomes, a comprehensive immunological evaluation is critical which is comprised of both traditional testing and quantifying recently proposed biomarkers for sepsis. There is an urgent need to develop novel point‐of‐care, low‐cost systems which can accurately stratify patients. These point‐of‐critical‐care sensors should adopt a multiplexed approach utilizing multimodal sensing for heterogenous biomarker detection. For effective multiplexing, the sensors must satisfy criteria including rapid sample to result delivery, low sample volumes for clinical sample sparring, and reduced costs per test. A compendium of currently developed multiplexed micro and nano (M/N)‐based diagnostic technologies for potential applications toward sepsis are presented. We have also explored the various biomarkers targeted for sepsis including immune cell morphology changes, circulating proteins, small molecules, and presence of infectious pathogens. An overview of different M/N detection mechanisms are also provided, along with recent advances in related nanotechnologies which have shown improved patient outcomes and perspectives on what future successful technologies may encompass. This article is categorized under:Diagnostic Tools > Biosensingmore » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
