skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Novel Preoperative Risk Stratification Using Digital Phenotyping Applying a Scalable Machine-Learning Approach
BACKGROUND:Classification of perioperative risk is important for patient care, resource allocation, and guiding shared decision-making. Using discriminative features from the electronic health record (EHR), machine-learning algorithms can create digital phenotypes among heterogenous populations, representing distinct patient subpopulations grouped by shared characteristics, from which we can personalize care, anticipate clinical care trajectories, and explore therapies. We hypothesized that digital phenotypes in preoperative settings are associated with postoperative adverse events including in-hospital and 30-day mortality, 30-day surgical redo, intensive care unit (ICU) admission, and hospital length of stay (LOS). METHODS:We identified all laminectomies, colectomies, and thoracic surgeries performed over a 9-year period from a large hospital system. Seventy-seven readily extractable preoperative features were first selected from clinical consensus, including demographics, medical history, and lab results. Three surgery-specific datasets were built and split into derivation and validation cohorts using chronological occurrence. Consensusk-means clustering was performed independently on each derivation cohort, from which phenotypes’ characteristics were explored. Cluster assignments were used to train a random forest model to assign patient phenotypes in validation cohorts. We reconducted descriptive analyses on validation cohorts to confirm the similarity of patient characteristics with derivation cohorts, and quantified the association of each phenotype with postoperative adverse events by using the area under receiver operating characteristic curve (AUROC). We compared our approach to American Society of Anesthesiologists (ASA) alone and investigated a combination of our phenotypes with the ASA score. RESULTS:A total of 7251 patients met inclusion criteria, of which 2770 were held out in a validation dataset based on chronological occurrence. Using segmentation metrics and clinical consensus, 3 distinct phenotypes were created for each surgery. The main features used for segmentation included urgency of the procedure, preoperative LOS, age, and comorbidities. The most relevant characteristics varied for each of the 3 surgeries. Low-risk phenotype alpha was the most common (2039 of 2770, 74%), while high-risk phenotype gamma was the rarest (302 of 2770, 11%). Adverse outcomes progressively increased from phenotypes alpha to gamma, including 30-day mortality (0.3%, 2.1%, and 6.0%, respectively), in-hospital mortality (0.2%, 2.3%, and 7.3%), and prolonged hospital LOS (3.4%, 22.1%, and 25.8%). When combined with the ASA score, digital phenotypes achieved higher AUROC than the ASA score alone (hospital mortality: 0.91 vs 0.84; prolonged hospitalization: 0.80 vs 0.71). CONCLUSIONS:For 3 frequently performed surgeries, we identified 3 digital phenotypes. The typical profiles of each phenotype were described and could be used to anticipate adverse postoperative events.  more » « less
Award ID(s):
1722516
PAR ID:
10481510
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Wolters Kluwer
Date Published:
Journal Name:
Anesthesia & Analgesia
ISSN:
0003-2999
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To test the hypothesis that accuracy, discrimination, and precision in predicting postoperative complications improve when using both preoperative and intraoperative data input features versus preoperative data alone. Models that predict postoperative complications often ignore important intraoperative physiological changes. Incorporation of intraoperative physiological data may improve model performance. This retrospective cohort analysis included 52,529 inpatient surgeries at a single institution during a 5 year period. Random forest machine learning models in the validated MySurgeryRisk platform made patient-level predictions for three postoperative complications and mortality during hospital admission using electronic health record data and patient neighborhood characteristics. For each outcome, one model trained with preoperative data alone and one model trained with both preoperative and intraoperative data. Models were compared by accuracy, discrimination (expressed as AUROC), precision (expressed as AUPRC), and reclassification indices (NRI). Machine learning models incorporating both preoperative and intraoperative data had greater accuracy, discrimination, and precision than models using preoperative data alone for predicting all three postoperative complications (intensive care unit length of stay >48 hours, mechanical ventilation >48 hours, and neurological complications including delirium) and in-hospital mortality (accuracy: 88% vs. 77%, AUROC: 0.93 vs. 0.87, AUPRC: 0.21 vs. 0.15). Overall reclassification improvement was 2.9-10.0% for complications and 11.2% for in-hospital mortality. Incorporating both preoperative and intraoperative data significantly increased accuracy, discrimination, and precision for machine learning models predicting postoperative complications. 
    more » « less
  2. Gait speed assessment increases the predictive value of mortality and morbidity following older adults’ cardiac surgery. The purpose of this study was to improve clinical assessment and prediction of mortality and morbidity among older patients undergoing cardiac surgery through the identification of the relationships between preoperative gait and postural stability characteristics utilizing a noninvasive-wearable mobile phone device and postoperative cardiac surgical outcomes. This research was a prospective study of ambulatory patients aged over 70 years undergoing non-emergent cardiac surgery. Sixteen older adults with cardiovascular disease (Age 76.1 ± 3.6 years) scheduled for cardiac surgery within the next 24 h were recruited for this study. As per the Society of Thoracic Surgeons (STS) recommendation guidelines, eight of the cardiovascular disease (CVD) patients were classified as frail (prone to adverse outcomes with gait speed ≤0.833 m/s) and the remaining eight patients as non-frail (gait speed >0.833 m/s). Treating physicians and patients were blinded to gait and posture assessment results not to influence the decision to proceed with surgery or postoperative management. Follow-ups regarding patient outcomes were continued until patients were discharged or transferred from the hospital, at which time data regarding outcomes were extracted from the records. In the preoperative setting, patients performed the 5-m walk and stand still for 30 s in the clinic while wearing a mobile phone with a customized app “Lockhart Monitor” available at iOS App Store. Systematic evaluations of different gait and posture measures identified a subset of smartphone measures most sensitive to differences in two groups (frail versus non-frail) with adverse postoperative outcomes (morbidity/mortality). A regression model based on these smartphone measures tested positive on five CVD patients. Thus, clinical settings can readily utilize mobile technology, and the proposed regression model can predict adverse postoperative outcomes such as morbidity or mortality events. 
    more » « less
  3. OBJECTIVES:The optimal approach for resuscitation in septic shock remains unclear despite multiple randomized controlled trials (RCTs). Our objective was to investigate whether previously uncharacterized variation across individuals in their response to resuscitation strategies may contribute to conflicting average treatment effects in prior RCTs. DESIGN:We randomly split study sites from the Australian Resuscitation of Sepsis Evaluation (ARISE) and Protocolized Care for Early Septic Shock (ProCESS) trials into derivation and validation cohorts. We trained machine learning models to predict individual absolute risk differences (iARDs) in 90-day mortality in derivation cohorts and tested for heterogeneity of treatment effect (HTE) in validation cohorts and swapped these cohorts in sensitivity analyses. We fit the best-performing model in a combined dataset to explore roles of patient characteristics and individual components of early goal-directed therapy (EGDT) to determine treatment responses. SETTING:Eighty-one sites in Australia, New Zealand, Hong Kong, Finland, Republic of Ireland, and the United States. PATIENTS:Adult patients presenting to the emergency department with severe sepsis or septic shock. INTERVENTIONS:EGDT vs. usual care. MEASUREMENTS AND MAIN RESULTS:A local-linear random forest model performed best in predicting iARDs. In the validation cohort, HTE was confirmed, evidenced by an interaction between iARD prediction and treatment (p< 0.001). When patients were grouped based on predicted iARDs, treatment response increased from the lowest to the highest quintiles (absolute risk difference [95% CI], –8% [–19% to 4%] and relative risk reduction, 1.34 [0.89–2.01] in quintile 1 suggesting harm from EGDT, and 12% [1–23%] and 0.64 [0.42–0.96] in quintile 5 suggesting benefit). Sensitivity analyses showed similar findings. Pre-intervention albumin contributed the most to HTE. Analyses of individual EGDT components were inconclusive. CONCLUSIONS:Treatment response to EGDT varied across patients in two multicenter RCTs with large benefits for some patients while others were harmed. Patient characteristics, including albumin, were most important in identifying HTE. 
    more » « less
  4. ABSTRACT Understanding clinical trajectories of sepsis patients is crucial for prognostication, resource planning, and to inform digital twin models of critical illness. This study aims to identify common clinical trajectories based on dynamic assessment of cardiorespiratory support using a validated electronic health record data that covers retrospective cohort of 19,177 patients with sepsis admitted to intensive care units (ICUs) of Mayo Clinic Hospitals over 8-year period. Patient trajectories were modeled from ICU admission up to 14 days using an unsupervised machine learning two-stage clustering method based on cardiorespiratory support in ICU and hospital discharge status. Of 19,177 patients, 42% were female with a median age of 65 (interquartile range [IQR], 55–76) years, The Acute Physiology, Age, and Chronic Health Evaluation III score of 70 (IQR, 56–87), hospital length of stay (LOS) of 7 (IQR, 4–12) days, and ICU LOS of 2 (IQR, 1–4) days. Four distinct trajectories were identified: fast recovery (27% with a mortality rate of 3.5% and median hospital LOS of 3 (IQR, 2–15) days), slow recovery (62% with a mortality rate of 3.6% and hospital LOS of 8 (IQR, 6–13) days), fast decline (4% with a mortality rate of 99.7% and hospital LOS of 1 (IQR, 0–1) day), and delayed decline (7% with a mortality rate of 97.9% and hospital LOS of 5 (IQR, 3–8) days). Distinct trajectories remained robust and were distinguished by Charlson Comorbidity Index, The Acute Physiology, Age, and Chronic Health Evaluation III scores, as well as day 1 and day 3 SOFA (P< 0.001 ANOVA). These findings provide a foundation for developing prediction models and digital twin decision support tools, improving both shared decision making and resource planning. 
    more » « less
  5. Abstract Background Sepsis is a heterogeneous syndrome, and the identification of clinical subphenotypes is essential. Although organ dysfunction is a defining element of sepsis, subphenotypes of differential trajectory are not well studied. We sought to identify distinct Sequential Organ Failure Assessment (SOFA) score trajectory-based subphenotypes in sepsis. Methods We created 72-h SOFA score trajectories in patients with sepsis from four diverse intensive care unit (ICU) cohorts. We then used dynamic time warping (DTW) to compute heterogeneous SOFA trajectory similarities and hierarchical agglomerative clustering (HAC) to identify trajectory-based subphenotypes. Patient characteristics were compared between subphenotypes and a random forest model was developed to predict subphenotype membership at 6 and 24 h after being admitted to the ICU. The model was tested on three validation cohorts. Sensitivity analyses were performed with alternative clustering methodologies. Results A total of 4678, 3665, 12,282, and 4804 unique sepsis patients were included in development and three validation cohorts, respectively. Four subphenotypes were identified in the development cohort: Rapidly Worsening ( n  = 612, 13.1%), Delayed Worsening ( n  = 960, 20.5%), Rapidly Improving ( n  = 1932, 41.3%), and Delayed Improving ( n  = 1174, 25.1%). Baseline characteristics, including the pattern of organ dysfunction, varied between subphenotypes. Rapidly Worsening was defined by a higher comorbidity burden, acidosis, and visceral organ dysfunction. Rapidly Improving was defined by vasopressor use without acidosis. Outcomes differed across the subphenotypes, Rapidly Worsening had the highest in-hospital mortality (28.3%, P -value < 0.001), despite a lower SOFA (mean: 4.5) at ICU admission compared to Rapidly Improving (mortality:5.5%, mean SOFA: 5.5). An overall prediction accuracy of 0.78 (95% CI, [0.77, 0.8]) was obtained at 6 h after ICU admission, which increased to 0.87 (95% CI, [0.86, 0.88]) at 24 h. Similar subphenotypes were replicated in three validation cohorts. The majority of patients with sepsis have an improving phenotype with a lower mortality risk; however, they make up over 20% of all deaths due to their larger numbers. Conclusions Four novel, clinically-defined, trajectory-based sepsis subphenotypes were identified and validated. Identifying trajectory-based subphenotypes has immediate implications for the powering and predictive enrichment of clinical trials. Understanding the pathophysiology of these differential trajectories may reveal unanticipated therapeutic targets and identify more precise populations and endpoints for clinical trials. 
    more » « less