skip to main content


This content will become publicly available on December 5, 2024

Title: Novel Preoperative Risk Stratification Using Digital Phenotyping Applying a Scalable Machine-Learning Approach
BACKGROUND:

Classification of perioperative risk is important for patient care, resource allocation, and guiding shared decision-making. Using discriminative features from the electronic health record (EHR), machine-learning algorithms can create digital phenotypes among heterogenous populations, representing distinct patient subpopulations grouped by shared characteristics, from which we can personalize care, anticipate clinical care trajectories, and explore therapies. We hypothesized that digital phenotypes in preoperative settings are associated with postoperative adverse events including in-hospital and 30-day mortality, 30-day surgical redo, intensive care unit (ICU) admission, and hospital length of stay (LOS).

METHODS:

We identified all laminectomies, colectomies, and thoracic surgeries performed over a 9-year period from a large hospital system. Seventy-seven readily extractable preoperative features were first selected from clinical consensus, including demographics, medical history, and lab results. Three surgery-specific datasets were built and split into derivation and validation cohorts using chronological occurrence. Consensusk-means clustering was performed independently on each derivation cohort, from which phenotypes’ characteristics were explored. Cluster assignments were used to train a random forest model to assign patient phenotypes in validation cohorts. We reconducted descriptive analyses on validation cohorts to confirm the similarity of patient characteristics with derivation cohorts, and quantified the association of each phenotype with postoperative adverse events by using the area under receiver operating characteristic curve (AUROC). We compared our approach to American Society of Anesthesiologists (ASA) alone and investigated a combination of our phenotypes with the ASA score.

RESULTS:

A total of 7251 patients met inclusion criteria, of which 2770 were held out in a validation dataset based on chronological occurrence. Using segmentation metrics and clinical consensus, 3 distinct phenotypes were created for each surgery. The main features used for segmentation included urgency of the procedure, preoperative LOS, age, and comorbidities. The most relevant characteristics varied for each of the 3 surgeries. Low-risk phenotype alpha was the most common (2039 of 2770, 74%), while high-risk phenotype gamma was the rarest (302 of 2770, 11%). Adverse outcomes progressively increased from phenotypes alpha to gamma, including 30-day mortality (0.3%, 2.1%, and 6.0%, respectively), in-hospital mortality (0.2%, 2.3%, and 7.3%), and prolonged hospital LOS (3.4%, 22.1%, and 25.8%). When combined with the ASA score, digital phenotypes achieved higher AUROC than the ASA score alone (hospital mortality: 0.91 vs 0.84; prolonged hospitalization: 0.80 vs 0.71).

CONCLUSIONS:

For 3 frequently performed surgeries, we identified 3 digital phenotypes. The typical profiles of each phenotype were described and could be used to anticipate adverse postoperative events.

 
more » « less
Award ID(s):
1722516
NSF-PAR ID:
10481510
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Wolters Kluwer
Date Published:
Journal Name:
Anesthesia & Analgesia
ISSN:
0003-2999
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To test the hypothesis that accuracy, discrimination, and precision in predicting postoperative complications improve when using both preoperative and intraoperative data input features versus preoperative data alone. Models that predict postoperative complications often ignore important intraoperative physiological changes. Incorporation of intraoperative physiological data may improve model performance. This retrospective cohort analysis included 52,529 inpatient surgeries at a single institution during a 5 year period. Random forest machine learning models in the validated MySurgeryRisk platform made patient-level predictions for three postoperative complications and mortality during hospital admission using electronic health record data and patient neighborhood characteristics. For each outcome, one model trained with preoperative data alone and one model trained with both preoperative and intraoperative data. Models were compared by accuracy, discrimination (expressed as AUROC), precision (expressed as AUPRC), and reclassification indices (NRI). Machine learning models incorporating both preoperative and intraoperative data had greater accuracy, discrimination, and precision than models using preoperative data alone for predicting all three postoperative complications (intensive care unit length of stay >48 hours, mechanical ventilation >48 hours, and neurological complications including delirium) and in-hospital mortality (accuracy: 88% vs. 77%, AUROC: 0.93 vs. 0.87, AUPRC: 0.21 vs. 0.15). Overall reclassification improvement was 2.9-10.0% for complications and 11.2% for in-hospital mortality. Incorporating both preoperative and intraoperative data significantly increased accuracy, discrimination, and precision for machine learning models predicting postoperative complications. 
    more » « less
  2. Abstract Background Sepsis is a heterogeneous syndrome, and the identification of clinical subphenotypes is essential. Although organ dysfunction is a defining element of sepsis, subphenotypes of differential trajectory are not well studied. We sought to identify distinct Sequential Organ Failure Assessment (SOFA) score trajectory-based subphenotypes in sepsis. Methods We created 72-h SOFA score trajectories in patients with sepsis from four diverse intensive care unit (ICU) cohorts. We then used dynamic time warping (DTW) to compute heterogeneous SOFA trajectory similarities and hierarchical agglomerative clustering (HAC) to identify trajectory-based subphenotypes. Patient characteristics were compared between subphenotypes and a random forest model was developed to predict subphenotype membership at 6 and 24 h after being admitted to the ICU. The model was tested on three validation cohorts. Sensitivity analyses were performed with alternative clustering methodologies. Results A total of 4678, 3665, 12,282, and 4804 unique sepsis patients were included in development and three validation cohorts, respectively. Four subphenotypes were identified in the development cohort: Rapidly Worsening ( n  = 612, 13.1%), Delayed Worsening ( n  = 960, 20.5%), Rapidly Improving ( n  = 1932, 41.3%), and Delayed Improving ( n  = 1174, 25.1%). Baseline characteristics, including the pattern of organ dysfunction, varied between subphenotypes. Rapidly Worsening was defined by a higher comorbidity burden, acidosis, and visceral organ dysfunction. Rapidly Improving was defined by vasopressor use without acidosis. Outcomes differed across the subphenotypes, Rapidly Worsening had the highest in-hospital mortality (28.3%, P -value < 0.001), despite a lower SOFA (mean: 4.5) at ICU admission compared to Rapidly Improving (mortality:5.5%, mean SOFA: 5.5). An overall prediction accuracy of 0.78 (95% CI, [0.77, 0.8]) was obtained at 6 h after ICU admission, which increased to 0.87 (95% CI, [0.86, 0.88]) at 24 h. Similar subphenotypes were replicated in three validation cohorts. The majority of patients with sepsis have an improving phenotype with a lower mortality risk; however, they make up over 20% of all deaths due to their larger numbers. Conclusions Four novel, clinically-defined, trajectory-based sepsis subphenotypes were identified and validated. Identifying trajectory-based subphenotypes has immediate implications for the powering and predictive enrichment of clinical trials. Understanding the pathophysiology of these differential trajectories may reveal unanticipated therapeutic targets and identify more precise populations and endpoints for clinical trials. 
    more » « less
  3. Gait speed assessment increases the predictive value of mortality and morbidity following older adults’ cardiac surgery. The purpose of this study was to improve clinical assessment and prediction of mortality and morbidity among older patients undergoing cardiac surgery through the identification of the relationships between preoperative gait and postural stability characteristics utilizing a noninvasive-wearable mobile phone device and postoperative cardiac surgical outcomes. This research was a prospective study of ambulatory patients aged over 70 years undergoing non-emergent cardiac surgery. Sixteen older adults with cardiovascular disease (Age 76.1 ± 3.6 years) scheduled for cardiac surgery within the next 24 h were recruited for this study. As per the Society of Thoracic Surgeons (STS) recommendation guidelines, eight of the cardiovascular disease (CVD) patients were classified as frail (prone to adverse outcomes with gait speed ≤0.833 m/s) and the remaining eight patients as non-frail (gait speed >0.833 m/s). Treating physicians and patients were blinded to gait and posture assessment results not to influence the decision to proceed with surgery or postoperative management. Follow-ups regarding patient outcomes were continued until patients were discharged or transferred from the hospital, at which time data regarding outcomes were extracted from the records. In the preoperative setting, patients performed the 5-m walk and stand still for 30 s in the clinic while wearing a mobile phone with a customized app “Lockhart Monitor” available at iOS App Store. Systematic evaluations of different gait and posture measures identified a subset of smartphone measures most sensitive to differences in two groups (frail versus non-frail) with adverse postoperative outcomes (morbidity/mortality). A regression model based on these smartphone measures tested positive on five CVD patients. Thus, clinical settings can readily utilize mobile technology, and the proposed regression model can predict adverse postoperative outcomes such as morbidity or mortality events. 
    more » « less
  4. BACKGROUND: Lung transplantation is the gold standard for a carefully selected patient population with end-stage lung disease. We sought to create a unique risk stratification model using only preoperative recipient data to predict one-year postoperative mortality during our pre-transplant assessment. METHODS: Data of lung transplant recipients at Houston Methodist Hospital (HMH) from 1/2009 to 12/2014 were extracted from the United Network for Organ Sharing (UNOS) database. Patients were randomly divided into development and validation cohorts. Cox proportional-hazards models were conducted. Variables associated with 1-year mortality post-transplant were assigned weights based on the beta coefficients, and risk scores were derived. Patients were stratified into low-, medium- and high-risk categories. Our model was validated using the validation dataset and data from other US transplant centers in the UNOS database RESULTS: We randomized 633 lung recipients from HMH into the development (n=317 patients) and validation cohort (n=316). One-year survival after transplant was significantly different among risk groups: 95% (low-risk), 84% (medium-risk), and 72% (high-risk) (p<0.001) with a C-statistic of 0.74. Patient survival in the validation cohort was also significantly different among risk groups (85%, 77% and 65%, respectively, p<0.001). Validation of the model with the UNOS dataset included 9,920 patients and found 1-year survival to be 91%, 86% and 82%, respectively (p < 0.001). CONCLUSIONS: Using only recipient data collected at the time of pre-listing evaluation, our simple scoring system has good discrimination power and can be a practical tool in the assessment and selection of potential lung transplant recipients. 
    more » « less
  5. Keim-Malpass, Jessica (Ed.)
    During the early stages of hospital admission, clinicians use limited information to make decisions as patient acuity evolves. We hypothesized that clustering analysis of vital signs measured within six hours of hospital admission would reveal distinct patient phenotypes with unique pathophysiological signatures and clinical outcomes. We created a longitudinal electronic health record dataset for 75,762 adult patient admissions to a tertiary care center in 2014–2016 lasting six hours or longer. Physiotypes were derived via unsupervised machine learning in a training cohort of 41,502 patients applying consensus k -means clustering to six vital signs measured within six hours of admission. Reproducibility and correlation with clinical biomarkers and outcomes were assessed in validation cohort of 17,415 patients and testing cohort of 16,845 patients. Training, validation, and testing cohorts had similar age (54–55 years) and sex (55% female), distributions. There were four distinct clusters. Physiotype A had physiologic signals consistent with early vasoplegia, hypothermia, and low-grade inflammation and favorable short-and long-term clinical outcomes despite early, severe illness. Physiotype B exhibited early tachycardia, tachypnea, and hypoxemia followed by the highest incidence of prolonged respiratory insufficiency, sepsis, acute kidney injury, and short- and long-term mortality. Physiotype C had minimal early physiological derangement and favorable clinical outcomes. Physiotype D had the greatest prevalence of chronic cardiovascular and kidney disease, presented with severely elevated blood pressure, and had good short-term outcomes but suffered increased 3-year mortality. Comparing sequential organ failure assessment (SOFA) scores across physiotypes demonstrated that clustering did not simply recapitulate previously established acuity assessments. In a heterogeneous cohort of hospitalized patients, unsupervised machine learning techniques applied to routine, early vital sign data identified physiotypes with unique disease categories and distinct clinical outcomes. This approach has the potential to augment understanding of pathophysiology by distilling thousands of disease states into a few physiological signatures. 
    more » « less