skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Three‐Dimensional Habitat Structure Drives Avian Functional and Trait Diversity Across North America
ABSTRACT Understanding how three‐dimensional (3D) habitat structure drives biodiversity patterns is key to predicting how habitat alteration and loss will affect species and community‐level patterns in the future. To date, few studies have contrasted the effects of 3D habitat composition with those of 3D habitat configuration on biodiversity, with existing investigations often limited to measures of taxonomic diversity (i.e., species richness). Here, we examined the influence of Light Detecting and Ranging (LiDAR)‐derived 3D habitat structure–both its composition and configuration–on multiple facets of bird diversity. Specifically, we used data from the National Ecological Observatory Network (NEON) to test the associations between 11 measures of 3D habitat structure and avian species richness, functional and trait diversity, and phylogenetic diversity. We found that 3D habitat structure was the most consistent predictor of avian functional and trait diversity, with little to no effect on species richness or phylogenetic diversity. Functional diversity and individual trait characteristics were strongly associated with both 3D habitat composition and configuration, but the magnitude and the direction of the effects varied across the canopy, subcanopy, midstory, and understory vertical strata. Our findings suggest that 3D habitat structure influences avian diversity through its effects on traits. By examining the effects of multiple aspects of habitat structure on multiple facets of avian diversity, we provide a broader framework for future investigations on habitat structure.  more » « less
Award ID(s):
2307188 2307189
PAR ID:
10607918
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Ecology and Evolution
Volume:
15
Issue:
4
ISSN:
2045-7758
Page Range / eLocation ID:
e70988
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite experimental and observational studies demonstrating that biodiversity enhances primary productivity, the best metric for predicting productivity at broad geographic extents—functional trait diversity, phylogenetic diversity, or species richness—remains unknown. Using >1.8 million tree measurements from across eastern US forests, we quantified relationships among functional trait diversity, phylogenetic diversity, species richness, and productivity. Surprisingly, functional trait and phylogenetic diversity explained little variation in productivity that could not be explained by tree species richness. This result was consistent across the entire eastern United States, within ecoprovinces, and within data subsets that controlled for biomass or stand age. Metrics of functional trait and phylogenetic diversity that were independent of species richness were negatively correlated with productivity. This last result suggests that processes that determine species sorting and packing are likely important for the relationships between productivity and biodiversity. This result also demonstrates the potential confusion that can arise when interdependencies among different diversity metrics are ignored. Our findings show the value of species richness as a predictive tool and highlight gaps in knowledge about linkages between functional diversity and ecosystem functioning. 
    more » « less
  2. Abstract We investigated the effects of body mass, geographic range size, the within-range richness of host assemblages (diversity field) and the habitat breadth of small mammalian hosts from 6 biogeographic realms on the species richness of their flea and gamasid mite faunas. We also tested whether the probability of between-host ectoparasite sharing is related to host phylogenetic relatedness, trait similarity or geographic distance/environmental dissimilarity between their ranges. We asked whether the effects of host-associated determinants of ectoparasite richness and the probability of ectoparasite sharing differ between (1) biogeographic realms and (2) fleas and mites. Whenever significant effects of host body mass on ectoparasite richness were found, they were negative, whereas the significant effects of geographic range size, diversity field and habitat breadth were positive. The occurrence of each determinant’s effects on ectoparasite species richness differed (1) within fleas or mites between realms and (2) between fleas and mites within a realm. In all realms, the probability of a flea or a mite species being shared between hosts decreased with a decrease in the hosts’ phylogenetic relatedness, trait similarity, geographic distance between ranges or environmental similarity. The probabilities of an ectoparasite species being shared between hosts were most strongly related to the hosts’ trait similarity and were least related to the environmental similarity. We conclude that caution is needed in making judgements about the generality of macroecological patterns related to parasites based on the investigations of these patterns in limited numbers of localities and when pooling data on various taxa. 
    more » « less
  3. In addition to changes associated with climate and land use, parrots are threatened by hunting and capture for the pet trade, making them one of the most at risk orders of birds for which conservation action is especially important. Species richness is often used to identify high priority areas for conserving biodiversity. By definition, richness considers all species to be equally different from one another. However, ongoing research emphasizes the importance of incorporating ecological functions (functional diversity) or evolutionary relationships (phylogenetic diversity) to more fully understand patterns of biodiversity, because (1) areas of high species richness do not always represent areas of high functional or phylogenetic diversity, and (2) functional or phylogenetic diversity may better predict ecosystem function and evolutionary potential, which are essential for effective long–term conservation policy and management. We created a framework for identifying areas of high species richness, functional diversity, and phylogenetic diversity within the global distribution of parrots. We combined species richness, functional diversity, and phylogenetic diversity into an Integrated Biodiversity Index (IBI) to identify global biodiversity hotspots for parrots. We found important spatial mismatches between dimensions, demonstrating species richness is not always an effective proxy for other dimensions of parrot biodiversity. The IBI is an integrative and flexible index that can incorporate multiple dimensions of biodiversity, resulting in an intuitive and direct way of assessing comprehensive goals in conservation planning. 
    more » « less
  4. Abstract Nutrient enrichment impacts grassland plant diversity such as species richness, functional trait composition and diversity, but whether and how these changes affect ecosystem stability in the face of increasing climate extremes remains largely unknown.We quantified the direct and diversity‐mediated effects of nutrient addition (by nitrogen, phosphorus, and potassium) on the stability of above‐ground biomass production in 10 long‐term grassland experimental sites. We measured five facets of stability as the temporal invariability, resistance during and recovery after extreme dry and wet growing seasons.Leaf traits (leaf carbon, nitrogen, phosphorus, potassium, and specific leaf area) were measured under ambient and nutrient addition conditions in the field and were used to construct the leaf economic spectrum (LES). We calculated functional trait composition and diversity of LES and of single leaf traits. We quantified the contribution of intraspecific trait shifts and species replacement to change in functional trait composition as responses to nutrient addition and its implications for ecosystem stability.Nutrient addition decreased functional trait diversity and drove grassland communities to the faster end of the LES primarily through intraspecific trait shifts, suggesting that intraspecific trait shifts should be included for accurately predicting ecosystem stability. Moreover, the change in functional trait diversity of the LES in turn influenced different facets of stability. That said, these diversity‐mediated effects were overall weak and/or overwhelmed by the direct effects of nutrient addition on stability. As a result, nutrient addition did not strongly impact any of the stability facets. These results were generally consistent using individual leaf traits but the dominant pathways differed. Importantly, major influencing pathways differed using average trait values extracted from global trait databases (e.g. TRY).Synthesis. Investigating changes in multiple facets of plant diversity and their impacts on multidimensional stability under global changes such as nutrient enrichment can improve our understanding of the processes and mechanisms maintaining ecosystem stability. 
    more » « less
  5. Abstract Biodiversity is believed to be closely related to ecosystem functions. However, the ability of existing biodiversity measures, such as species richness and phylogenetic diversity, to predict ecosystem functions remains elusive. Here, we propose a new vector of diversity metrics, structural diversity, which directly incorporates niche space in measuring ecosystem structure. We hypothesize that structural diversity will provide better predictive ability of key ecosystem functions than traditional biodiversity measures. Using the new lidar-derived canopy structural diversity metrics on 19 National Ecological Observation Network forested sites across the USA, we show that structural diversity is a better predictor of key ecosystem functions, such as productivity, energy, and nutrient dynamics than existing biodiversity measures (i.e. species richness and phylogenetic diversity). Similar to existing biodiversity measures, we found that the relationships between structural diversity and ecosystem functions are sensitive to environmental context. Our study indicates that structural diversity may be as good or a better predictor of ecosystem functions than species richness and phylogenetic diversity. 
    more » « less