skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: False Data Injection Cyberattacks Targeting Electric Vehicles in Smart Power Distribution Systems
This paper presents a false data injection (FDI) attack model to target a selection of plugged-in electric vehicles (EVs) in a smart power distribution system resulting in a range of operational issues including but not limited to voltage collapse. To reduce the total cost and difficulty of the cyberattack, attacker utilizes a pre-attack analysis via generating PV and VQ curves for the buses of the distribution system in order to precisely recognize the weakest buses of the system (i.e., the most vulnerable ones) and also the required active and reactive power to be injected into the targeted buses to result in voltage collapse. The effectiveness of the proposed attack model is validated on an IEEE test distribution system modified to contain distributed generation (DG) and EV aggregators.  more » « less
Award ID(s):
2348420
PAR ID:
10607942
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE Transportation Electrification Conference and Expo (ITEC)
Date Published:
ISBN:
979-8-3503-1766-4
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Location:
Chicago, IL, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. False data injection (FDI) attacks targeting under-load tap changing (ULTC) transformers pose a significant threat to smart distribution networks by exploiting vulnerabilities in the volt-var optimization (VVO) process, leading to potential undervoltage and voltage collapse. The increased integration of renewable energy and cyber-physical systems has expanded the attack surface, making traditional detection methods inadequate. For example, in 2023, attacks on utilities and decentralized components in the United States rose by 200%, with overall cyber threats increasing by 104%, highlighting growing vulnerabilities in distribution systems. To this end, this article proposes a two-stage remediation framework for decentralized FDI (DFDI) attacks targeting ULTC transformers. In the attack stage, vulnerabilities in ULTCs and voltage regulators are scrutinized, risking voltage collapse or blackouts in the distribution system. In the remediation stage, the distribution system operator focuses on non-attacked ULTCs, voltage regulators, distributed generation (DG) units, and smart homes to minimize reliance on compromised components. In this regard, a distinctive formulation of distribution network resilience and load management (DNRLM) problem is introduced to identify a resilient network topology and determine a situational power balance strategy. The proposed framework focuses on minimizing the system's reliance on the attacked ULTCs and voltage regulator components, thereby avoiding the intended voltage collapse caused by such DFDIs. The simulation results verify that the proposed method reduces the voltage collapse proximity index by over 60%, enhancing system resilience under DFDI attacks. 
    more » « less
  2. The digital transformation of power system introduces False Data Injection Attacks (FDIAs) on voltage stability that compromises the operational integrity of power grids. Existing detection mechanisms for FDIAs often fall short as they overlook the complexities of cyberattacks targeting voltage stability and rely on outdated models that do not capture the dynamic interplay between power system operations and potential threats. In response to these gaps, this paper proposes a novel FDIA detection method designed specifically for voltage regulation vulnerabilities, aiming to enhance the voltage stability index. The proposed method utilizes an unsupervised learning framework capable of identifying cyberattacks targeting voltage regulation. A bi-level optimization approach is put forward to concurrently optimize the objectives of both attackers and defenders in the context of voltage regulation. The effectiveness of this approach is validated through comprehensive training and testing on a variety of attack scenarios, demonstrating superior generalization across different conditions. Extensive simulations on the Iberian power system topology, with 486 buses, show that the proposed model achieves more than 93% detection rate. These results highlight the robustness and efficacy of the proposed strategy in strengthening the cyber resilience of power systems against sophisticated FDIA threats on voltage stability. 
    more » « less
  3. In the process of protecting power systems against different types of cyberattacks, the primary step is to precisely model such frameworks from attacker's perspective. This paper investigates a false data injection (FDI) attack framework, which can target under-load tap changing (ULTC) transformers, resulting in manipulated voltage profile in radial smart distribution networks. The developed FDI model compromises the voltage profile of a distribution feeder through misleading the volt/var optimization, that optimally manages system-wide voltage profile and flow of reactive power. The presented attack model is formulated as a bi-objective optimization problem. The objective functions from the attacker's point of view are 1) minimizing the level of false data to be injected into the smart meters associated with load data and 2) maximizing the voltage deviation of the distribution grid. Negative impacts of such a cyberattack model have been validated and discussed in this work on an IEEE distribution test system, necessitating proper remedial actions, which will be elaborated in the next step of this research. 
    more » « less
  4. Voltage instability occurs when a power system is unable to meet reactive power demand at one or more buses. Voltage instability events have caused several major outages and promise to become more frequent due to increasing energy demand. The future smart grid may help to ensure voltage stability by enabling rapid detection of possible voltage instability and implementation of corrective action. These corrective actions will only be effective in restoring stability if they are chosen in a timely, scalable manner. Current techniques for selecting control actions, however, rely on exhaustive search, and hence may choose an inefficient control strategy. In this paper, we propose a submodular optimization approach to designing a control strategy to prevent voltage instability at one or more buses. Our key insight is that the deviation from the desired voltage is a supermodular function of the set of reactive power injections that are employed, leading to computationally efficient control algorithms with provable optimality guarantees. Furthermore, we show that the optimality bound of our approach can be improved from 1/3 to 1/2 when the power system operates under heavy loading conditions. We demonstrate our framework through extensive simulation study on the IEEE 30 bus test case. 
    more » « less
  5. This paper proposes an on-line remedial action scheme (OLRAS) in order to mitigate the voltage violations caused by false data injection attacks (FDIAs) targeting under load tap changing (ULTC) transformers in smart distribution systems. The FDIA framework contains two different phases. In the attack phase, distribution system operator (DSO), being in attacker's shoe, considers cyberattack scenarios through compromising the results of volt-var optimization problem in a radial distribution grid modified with distributed energy resources (DERs) such as photovoltaic (PV) units and wind turbines (WTs). The outcome of the attack phase will be the compromised voltage profile of the distribution grid showing different rates of voltage violations. In the reaction phase, the DSO rapidly identifies a customized distribution feeder reconfiguration (CDFR) in order to update the flows of active and reactive power throughout the targeted distribution system and recover the voltage profile. The objective functions of the proposed CDFR are defined to minimize the impacts of such cyberattacks targeting ULTCs within distribution grids. This will empower DSOs to react to severe cyberattacks, bypassing the detection stage, and address the voltage violations in a timely manner. The effectiveness of the proposed OLRAS is validated on an IEEE test system. 
    more » « less