skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cloud Edge Energy Adjusts to the Saturated Tropospheric Mean Independent of Climate State
Abstract Large‐scale integral constraints on cloud behaviors can guide their more precise representation in present and future climates. We show theoretically that the mean moist static energy at cloud edge is nearly equivalent to the mean saturated static energy of the entire atmospheric domain, whether for a given level or for the cloudy troposphere as a whole. A numerical model simulation of a deep‐convective cloud field shows this equivalence holds over a 10 K range in sea surface temperature. The constraint offers a simple method for estimating the mean level of convective neutral buoyancy, one that rises linearly with the energy of sea surface air. The simulations suggest an interesting second constraint, that the maximum deviation of the saturated static energy profile from its tropospheric mean value is equivalent to the tropospheric mean energy of the saturation deficit.  more » « less
Award ID(s):
2341274 2210179
PAR ID:
10607987
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
52
Issue:
12
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Organized deep convective activity has been routinely monitored by satellite precipitation radar from the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Mission (GPM). Organized deep convective activity is found to increase not only with sea surface temperature (SST) above 27°C, but also with low-level wind shear. Precipitation shows a similar increasing relationship with both SST and low-level wind shear, except for the highest low-level wind shear. These observations suggest that the threshold for organized deep convection and precipitation in the tropics should consider not only SST, but also vertical wind shear. The longwave cloud radiative feedback, measured as the tropospheric longwave cloud radiative heating per amount of precipitation, is found to generally increase with stronger organized deep convective activity as SST and low-level wind shear increase. Organized deep convective activity, the longwave cloud radiative feedback, and cirrus ice cloud cover per amount of precipitation also appear to be controlled more strongly by SST than by the deviation of SST from its tropical mean. This study hints at the importance of non-thermodynamic factors such as vertical wind shear for impacting tropical convective structure, cloud properties, and associated radiative energy budget of the tropics. Significance StatementThis study uses tropical satellite observations to demonstrate that vertical wind shear affects the relationship between sea surface temperature and tropical organized deep convection and precipitation. Shear also affects associated cloud properties and how clouds affect the flow of radiation in the atmosphere. Although how vertical wind shear affects convective organization has long been studied in the mesoscale community, the study attempts to apply mesoscale theory to explain the large-scale mean organization of tropical deep convection, cloud properties, and radiative feedbacks. The study also provides a quantitative observational baseline of how vertical wind shear modifies cloud radiative effects and convective organization, which can be compared to numerical simulations. 
    more » « less
  2. Abstract This work evaluates how well Coupled Model Intercomparison Project 6 models reproduce the climatology of North American severe convective storm (SCS) environments in ERA5 reanalysis and examines what drives biases across models. Biases in spring SCS environments vary widely in magnitude and spatial pattern, though most models do well in reproducing the climatological pattern and a few (MPI and CNRM) also reproduce the overall magnitude. SCS biases are driven by biases in extreme convective available potential energy. These biases are ultimately found to be driven by biases in mean‐state near‐surface moist static energy, indicating that the SCS environments depend strongly on the near‐surface mean state. Results are similar for fall, but not summer or winter when free‐tropospheric biases are also important. Biases differ strongly across parent models but weakly across child models of the same parent. These outcomes help identify models well‐suited for studying climate effects on SCS environments. 
    more » « less
  3. Abstract Data from recent field programs studying deep convection may be useful in constraining cumulus parameterizations. To this end, gridded dropsonde analyses are made using data from the OTREC (Organization of Tropical East Pacific Convection) and PREDICT (PreDepression Investigation of Cloud‐Systems in the Tropics) projects to characterize the mesoscale properties of tropical oceanic convection in terms of selected thermodynamic parameters computable from the explicit grids of large‐scale models. In particular, saturation fraction, lower tropospheric moist convective instability, and convective inhibition appear to govern column‐integrated moisture convergence, while sea surface temperature is related to the top‐heaviness of mass flux profiles and the integrated entropy divergence. Local (as opposed to global) surface heat and moisture fluxes and convective available potential energy correlate weakly with these quantities. Recommendations to improve cumulus parameterizations are enumerated. 
    more » « less
  4. Abstract An energy budget combining atmospheric moist static energy (MSE) and upper ocean heat content (OHC) is used to examine the processes impacting day-to-day convective variability in the tropical Indian and western Pacific Oceans. Feedbacks arising from atmospheric and oceanic transport processes, surface fluxes, and radiation drive the cyclical amplification and decay of convection around suppressed and enhanced convective equilibrium states, referred to as shallow and deep convective discharge–recharge (D–R) cycles, respectively. The shallow convective D–R cycle is characterized by alternating enhancements of shallow cumulus and stratocumulus, often in the presence of extensive cirrus clouds. The deep convective D–R cycle is characterized by sequential increases in shallow cumulus, congestus, narrow deep precipitation, wide deep precipitation, a mix of detached anvil and altostratus and altocumulus, and once again shallow cumulus cloud types. Transitions from the shallow to deep D–R cycle are favored by a positive “column process” feedback, while discharge of convective instability and OHC by mesoscale convective systems (MCSs) contributes to transitions from the deep to shallow D–R cycle. Variability in the processes impacting MSE is comparable in magnitude to, but considerably more balanced than, variability in the processes impacting OHC. Variations in the quantity of atmosphere–ocean coupled static energy (MSE + OHC) result primarily from atmospheric and oceanic transport processes, but are mainly realized as changes in OHC. MCSs are unique in their ability to rapidly discharge both lower-tropospheric convective instability and OHC. 
    more » « less
  5. Abstract The modern Arctic climate during wintertime is characterized by sea-ice cover, a strong surface temperature inversion, and the absence of convection. Correspondingly, the energy balance in the Arctic atmosphere today is dominated by atmospheric radiative cooling and advective heating, so-called radiative advective equilibrium. Climate change in the Arctic involves sea-ice melt, vanishing of the surface inversion, and emergence of convective precipitation. Here we show climate change in the Arctic involves the emergence of a new energy balance regime characterized by radiative cooling, convective heating, and advective heating, so-called radiative convective advective equilibrium. A time-dependent decomposition of the atmospheric energy balance shows the regime transition is associated with enhanced radiative cooling followed by decreased advective heating. The radiative cooling response consists of a robust clear-sky greenhouse effect and a transient cloud contribution that varies across models. Mechanism-denial experiments in an aquaplanet with and without interactive sea ice highlight the important role of sea-ice melt in both the radiative cooling and advective heating responses. The results show that climate change in the Arctic involves temporally evolving mechanisms, suggesting that an emergent constraint based on historical data or trends may not constrain the long-term response. 
    more » « less