Abstract Dissolved inorganic carbon (DIC) and its stable carbon isotope (δ13C‐DIC) are valuable parameters for studying the aquatic carbon cycle and quantifying ocean anthropogenic carbon accumulation rates. However, the potential of this coupled pair is underexploited as only 15% or less of cruise samples have been analyzed forδ13C‐DIC because the traditional isotope analysis is labor‐intensive and restricted to onshore laboratories. Here, we improved the analytical precision and reported the protocol of an automated, efficient, and high‐precision method for ship‐based DIC andδ13C‐DIC analysis based on cavity ring‐down spectroscopy (CRDS). We also introduced a set of stable in‐house standards to ensure accurate and consistent DIC andδ13C‐DIC measurements, especially on prolonged cruises. With this method, we analyzed over 1600 discrete seawater samples over a 40‐d cruise along the North American eastern ocean margin in summer 2022, representing the first effort to collect a large dataset ofδ13C‐DIC onboard of any oceanographic expedition. We evaluated the method's uncertainty, which was 1.2 μmol kg−1for the DIC concentration and 0.03‰ for theδ13C‐DIC value (1σ). An interlaboratory comparison of onboard DIC concentration analysis revealed an average offset of 2.0 ± 3.8 μmol kg−1between CRDS and the coulometry‐based results. The cross‐validation ofδ13C‐DIC in the deep‐ocean data exhibited a mean difference of only −0.03‰ ± 0.07‰, emphasizing the consistency with historical data. Potential applications in aquatic biogeochemistry are discussed.
more »
« less
High‐resolution dataset of stable carbon isotope of dissolved inorganic carbon ( δ13C ‐ DIC ) from the North Atlantic Ocean
Abstract The stable isotope ratio of dissolved inorganic carbon (δ13C‐DIC) is a valuable tracer for investigating carbon cycling in aquatic environments. However, its potential remains underutilized due to limited data availability. Fewer than 15% of cruise samples are analyzed forδ13C‐DIC, as isotope analysis using isotope ratio mass spectrometry is labor‐intensive and restricted to onshore laboratories. We present over 3500δ13C‐DIC measurements from the 2023 Global Ocean Ship‐based Hydrographic Investigations Program A16N cruise in the North Atlantic. Notably, three‐quarters of these measurements were conducted onboard using a CO2extraction device coupled with cavity ring‐down spectroscopy, a more efficient and cost‐effective method. This extensive dataset providesδ13C‐DIC values with spatial resolution comparable to other ocean carbonate chemistry and biogeochemical parameters. This dataset supports improved quantification of anthropogenic CO2uptake and storage, and may facilitate the development of algorithms to estimateδ13C‐DIC in under sampled regions.
more »
« less
- Award ID(s):
- 2438144
- PAR ID:
- 10607992
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Limnology and Oceanography Letters
- Volume:
- 10
- Issue:
- 5
- ISSN:
- 2378-2242
- Format(s):
- Medium: X Size: p. 670-679
- Size(s):
- p. 670-679
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The southeastern Atlantic Ocean is a crucial yet understudied region for the ocean absorption of anthropogenic carbon (Canth). Data from the A12 (2020) and A13.5 (2010) cruises offer an opportunity to examine changes in dissolved inorganic carbon (DIC), its stable isotope (δ13C), and Canthover the past decade within a limited region (1∼3°E, 32∼42°S). For the decade of 2010–2020, Canthinvasion was observed from the sea surface down to 1,200 m based on both DIC and δ13C data. The mean Canthincrease rate (1.08 ± 0.26 mol m−2 yr−1) during this period accelerated from 0.87 ± 0.05 mol m−2 yr−1during the previous period (1983/84–2010). The δ13C‐based Canthincrease closely matches the DIC‐based estimation below 500 m but is 26% higher in the upper ocean. This discrepancy is likely due to δ13C's longer air‐sea exchange timescale, seasonal variability in the upper ocean, and the chosen ratio of anthropogenically induced changes in δ13C and DIC. Finally, column inventory changes based on the two methods also exhibit very similar mean Canthuptake rates. The paired DIC concentration and stable isotope dataset may enhance our ability to constrain Canthaccumulation and its controlling mechanisms in the ocean.more » « less
-
Carré, Matthieu (Ed.)Despite their importance for Earth’s climate and paleoceanography, the cycles of carbon (C) and its isotope13C in the ocean are not well understood. Models typically do not decompose C and13C storage caused by different physical, biological, and chemical processes, which makes interpreting results difficult. Consequently, basic observed features, such as the decreased carbon isotopic signature (δ13CDIC) of the glacial ocean remain unexplained. Here, we review recent progress in decomposing Dissolved Inorganic Carbon (DIC) into preformed and regenerated components, extend a precise and complete decomposition to δ13CDIC, and apply it to data-constrained model simulations of the Preindustrial (PI) and Last Glacial Maximum (LGM) oceans. Regenerated components, from respired soft-tissue organic matter and dissolved biogenic calcium carbonate, are reduced in the LGM, indicating a decrease in the active part of the biological pump. Preformed components increase carbon storage and decrease δ13CDICby 0.55 ‰ in the LGM. We separate preformed into saturation and disequilibrium components, each of which have biological and physical contributions. Whereas the physical disequilibrium in the PI is negative for both DIC and δ13CDIC, and changes little between climate states, the biological disequilibrium is positive for DIC but negative for δ13CDIC, a pattern that is magnified in the LGM. The biological disequilibrium is the dominant driver of the increase in glacial ocean C and the decrease in δ13CDIC, indicating a reduced sink of biological carbon. Overall, in the LGM, biological processes increase the ocean’s DIC inventory by 355 Pg more than in the PI, reduce its mean δ13CDICby an additional 0.52 ‰, and contribute 60 ppm to the lowering of atmospheric CO2. Spatial distributions of the δ13CDICcomponents are presented. Commonly used approximations based on apparent oxygen utilization and phosphate are evaluated and shown to have large errors.more » « less
-
Abstract Carbon fluxes in terrestrial ecosystems and their response to environmental change are a major source of uncertainty in the modern carbon cycle. The National Ecological Observatory Network (NEON) presents the opportunity to merge eddy covariance (EC)‐derived fluxes with CO2isotope ratio measurements to gain insights into carbon cycle processes. Collected continuously and consistently across >40 sites, NEON EC and isotope data facilitate novel integrative analyses. However, currently provisioned atmospheric isotope data are uncalibrated, greatly limiting ability to perform cross‐site analyses. Here, we present two approaches to calibrating NEON CO2isotope ratios, along with an R package to calibrate NEON data. We find that calibrating CO2isotopologues independently yields a lowerδ13C bias (<0.05‰) and higher precision (<0.40‰) than directly correctingδ13C with linear regression (bias: <0.11‰, precision: 0.42‰), but with slightly higher error and lower precision in calibrated CO2mole fraction. The magnitude of the corrections toδ13C and CO2mole fractions vary substantially by site, underscoring the need for users to apply a consistent calibration framework to data in the NEON archive. Post‐calibration data sets show that site mean annualδ13C correlates negatively with precipitation, temperature, and aridity, but positively with elevation. Forested and agricultural ecosystems exhibit larger gradients in CO2andδ13C than other sites, particularly during the summer and at night. The overview and analysis tools developed here will facilitate cross‐site analysis using NEON data, provide a model for other continental‐scale observational networks, and enable new advances leveraging the isotope ratios of specific carbon fluxes.more » « less
-
Abstract The prevailing hypothesis to explain pCO2rise at the last glacial termination calls upon enhanced ventilation of excess respired carbon that accumulated in the deep sea during the glacial. Recent studies argue lower [O2] in the glacial ocean is indicative of increased carbon respiration. The magnitude of [O2] depletion was 100–140 µ mol/kg at the glacial maximum. Because respiration is coupled toδ13C of dissolved inorganic carbon (DIC), [O2] depletion of 100–140 µ mol/kg from carbon respiration would lower deep waterδ13CDICby ∼1‰ relative to surface water. Prolonged sequestration of respired carbon would also lower the amount of14C in the deep sea. We show that Pacific Deep Waterδ13CDICdid not decrease relative to the surface ocean and Δ14C was only ∼50‰ lower during the late glacial. Model simulations of the hypothesized ventilation change during deglaciation lead to large increases inδ13CDIC, Δ14C, andε14C that are not recorded in observations.more » « less
An official website of the United States government
