A metacognitive radar switches between two modes of cognition— one mode to achieve a high-quality estimate of targets, and the other mode to hide its utility function (plan). To achieve high-quality es- timates of targets, a cognitive radar performs a constrained utility maximization to adapt its sensing mode in response to a changing target environment. If an adversary can estimate the utility function of a cognitive radar, it can determine the radar’s sensing strategy and mitigate the radar performance via electronic countermeasures (ECM). This article discusses a metacognitive radar that switches between two modes of cognition: achieving satisfactory estimates of a target while hiding its strategy from an adversary that detects cognition. The radar does so by transmitting purposefully designed suboptimal responses to spoof the adversary’s Neyman–Pearson de- tector. We provide theoretical guarantees by ensuring that the Type-I error probability of the adversary’s detector exceeds a predefined level for a specified tolerance on the radar’s performance loss. We illustrate our cognition-masking scheme via numerical examples in- volving waveform adaptation and beam allocation. We show that small purposeful deviations from the optimal emission confuse the adversary by significant amounts, thereby masking the radar’s cognition. Our approach uses ideas from revealed preference in microeconomics and adversarial inverse reinforcement learning. Our proposed algorithms provide a principled approach for system-level electronic counter- countermeasures to hide the radar’s strategy from an adversary. We also provide performance bounds for our cognition-masking scheme when the adversary has misspecified measurements of the radar’s response.
more »
« less
This content will become publicly available on February 1, 2026
Fisher Information Approach for Masking the Sensing Plan: Applications in Multifunction Radars
How to design a Markov decision process (MDP)-based radar controller that makes small sacrifices in performance to mask its sensing plan from an adversary? The radar controller purposefully minimizes the Fisher information of its emissions so that an adversary cannot identify the controller’s model parameters accurately. Unlike classical open-loop statistical inference, where the Fisher information serves as a lower bound for the achievable covariance, this article employs the Fisher information as a design constraint for a closed-loop radar controller to mask its sensing plan. We analytically derive a closed-form expression for the determinant of the Fisher informa- tion matrix (FIM) pertaining to the parameters of the MDP-based controller. Subsequently, we formulate an MDP, which is regularized by the determinant of the adversary’s FIM. This results in the per- turbations to the total cost of operation, state–action costs, and the transition matrix. In addition, we propose a maximum-entropy-based convex lower bound for the FIM-constrained MDP, whose solution can serve as an initialization point for the proposed nonlinear optimization problem. This convex lower bound aligns with existing work that employs the same maximum entropy criteria to mask the sensing plan. Numerical results show that the introduction of minor perturbations to the MDP’s state–action costs, transition kernel, and the total operation cost can reduce the Fisher information of the emissions. Consequently, this reduction amplifies the variability in policy and transition kernel estimation errors, thwarting the adversary’s accuracy in estimating the controller’s sensing plan. We demonstrate this by comparing the error in the estimate of the transition kernel under different criteria: the FIM criteria, the maximum entropy criteria, a sensing plan where actions are chosen uniformly, and the unmasked sensing plan.
more »
« less
- Award ID(s):
- 2312198
- PAR ID:
- 10608003
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Transactions on Aerospace and Electronic Systems
- Volume:
- 61
- Issue:
- 1
- ISSN:
- 0018-9251
- Page Range / eLocation ID:
- 233 to 249
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Recently mean field theory has been successfully used to analyze properties of wide, random neural networks. It gave rise to a prescriptive theory for initializing feed-forward neural networks with orthogonal weights, which ensures that both the forward propagated activations and the backpropagated gradients are near isometries and as a consequence training is orders of magnitude faster. Despite strong empirical performance, the mechanisms by which critical initializations confer an advantage in the optimization of deep neural networks are poorly understood. Here we show a novel connection between the maximum curvature of the optimization landscape (gradient smoothness) as measured by the Fisher information matrix (FIM) and the spectral radius of the input-output Jacobian, which partially explains why more isometric networks can train much faster. Furthermore, given that orthogonal weights are necessary to ensure that gradient norms are approximately preserved at initialization, we experimentally investigate the benefits of maintaining orthogonality throughout training, and we conclude that manifold optimization of weights performs well regardless of the smoothness of the gradients. Moreover, we observe a surprising yet robust behavior of highly isometric initializations --- even though such networks have a lower FIM condition number \emph{at initialization}, and therefore by analogy to convex functions should be easier to optimize, experimentally they prove to be much harder to train with stochastic gradient descent. We conjecture the FIM condition number plays a non-trivial role in the optimization.more » « less
-
Yamashita, Y.; Kano, M. (Ed.)Membrane characterization provides essential information for the scale-up, design, and optimization of new separation systems. We recently proposed the diafiltration apparatus for high-throughput analysis (DATA), which enables a 5-times reduction in the time, energy, and the number of experiments necessary to characterize membrane transport properties. This paper applies formal model-based design of experiments (MBDoE) techniques to further analyse and optimize DATA. For example, the eigenvalues and eigenvectors of the Fisher Information Matrix (FIM) show dynamic diafiltration experiments improve parameter identifiability by 3 orders of magnitude compared to traditional filtration experiments. Moreover, continuous retentate conductivity measurements in DATA improve A-, D-, E-, and ME-optimal MBDoE criteria by between 6 % and 32 %. Using these criteria, we identify pressure and initial concentrations conditions that maximize parameter precision and remove correlations.more » « less
-
Abstract Audio-based sensing enables fine-grained human activity detection, such as sensing hand gestures and contact-free estimation of the breathing rate. A passive adversary, equipped with microphones, can leverage the ongoing sensing to infer private information about individuals. Further, with multiple microphones, a beamforming-capable adversary can defeat the previously-proposed privacy protection obfuscation techniques. Such an adversary can isolate the obfuscation signal and cancel it, even when situated behind a wall. AudioSentry is the first to address the privacy problem in audio sensing by protecting the users against a multi-microphone adversary. It utilizes the commodity and audio-capable devices, already available in the user’s environment, to form a distributed obfuscator array. AudioSentry packs a novel technique to carefully generate obfuscation beams in different directions, preventing the multi-microphone adversary from canceling the obfuscation signal. AudioSentry follows by a dynamic channel estimation scheme to preserve authorized sensing under obfuscation. AudioSentry offers the advantages of being practical to deploy and effective against an adversary with a large number of microphones. Our extensive evaluations with commodity devices show that protects the user’s privacy against a 16-microphone adversary with only four commodity obfuscators, regardless of the adversary’s position. AudioSentry provides its privacy-preserving features with little overhead on the authorized sensor.more » « less
-
Security of cyber-physical systems (CPS) continues to pose new challenges due to the tight integration and operational complexity of the cyber and physical components. To address these challenges, this article presents a domain-aware, optimization-based approach to determine an effective defense strategy for CPS in an automated fashion—by emulating a strategic adversary in the loop that exploits system vulnerabilities, interconnection of the CPS, and the dynamics of the physical components. Our approach builds on an adversarial decision-making model based on a Markov Decision Process (MDP) that determines the optimal cyber (discrete) and physical (continuous) attack actions over a CPS attack graph. The defense planning problem is modeled as a non-zero-sum game between the adversary and defender. We use a model-free reinforcement learning method to solve the adversary’s problem as a function of the defense strategy. We then employ Bayesian optimization (BO) to find an approximatebest-responsefor the defender to harden the network against the resulting adversary policy. This process is iterated multiple times to improve the strategy for both players. We demonstrate the effectiveness of our approach on a ransomware-inspired graph with a smart building system as the physical process. Numerical studies show that our method converges to a Nash equilibrium for various defender-specific costs of network hardening.more » « less
An official website of the United States government
