skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 19, 2026

Title: Pinning Is Futile: You Need More Than Local Dependency Versioning to Defend against Supply Chain Attacks
Recent high-profile incidents in open-source software have greatly raised practitioner attention on software supply chain attacks. To guard against potential malicious package updates, security practitioners advocatepinningdependency to specific versions rather thanfloatingin version ranges. However, it remains controversial whether pinning carries a meaningful security benefit that outweighs the cost of maintaining outdated and possibly vulnerable dependencies. In this paper, we quantify, through counterfactual analysis and simulations, the security and maintenance impact of version constraints in the npm ecosystem. By simulating dependency resolutions over historical time points, we find that pinning direct dependencies not only (as expected) increases the cost of maintaining vulnerable and outdated dependencies, but also (surprisingly) even increases the risk of exposure to malicious package updates in larger dependency graphs due to the specifics of npm’s dependency resolution mechanism. Finally, we explore collective pinning strategies to secure the ecosystem against supply chain attacks, suggesting specific changes to npm to enable such interventions. Our study provides guidance for practitioners and tool designers to manage their supply chains more securely.  more » « less
Award ID(s):
2206859 2317168 2317169
PAR ID:
10608018
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the ACM on Software Engineering
Volume:
2
Issue:
FSE
ISSN:
2994-970X
Page Range / eLocation ID:
266 to 289
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The NPM package repository contains over two million packages and serves tens of billions of downloads per-week. Nearly every single JavaScript application uses the NPM package manager to install packages from the NPM repository. NPM relies on a “semantic versioning” (‘semver’) scheme to maintain a healthy ecosystem, where bug-fixes are reliably delivered to downstream packages as quickly as possible, while breaking changes require manual intervention by downstream package maintainers. In order to understand how developers use semver, we build a dataset containing every version of every package on NPM and analyze the flow of updates throughout the ecosystem. We build a time-travelling dependency resolver for NPM, which allows us to determine precisely which versions of each dependency would have been resolved at different times. We segment our analysis to allow for a direct analysis of security-relevant updates (those that introduce or patch vulnerabilities) in comparison to the rest of the ecosystem. We find that when developers use semver correctly, critical updates such as security patches can flow quite rapidly to downstream dependencies in the majority of cases (90.09%), but this does not always occur, due to developers’ imperfect use of both semver version constraints and semver version number increments. Our findings have implications for developers and researchers alike. We make our infrastructure and dataset publicly available under an open source license. 
    more » « less
  2. Recent years have shown increased cyber attacks targeting less secure elements in the software supply chain and causing fatal damage to businesses and organizations. Past well-known examples of software supply chain attacks are the SolarWinds or log4j incidents that have affected thousands of customers and businesses. The US government and industry are equally interested in enhancing soft- ware supply chain security. On February 22, 2023, researchers from the NSF-supported Secure Software Supply Chain Center (S3C2) conducted a Secure Software Supply Chain Summit with a diverse set of 17 practitioners from 15 companies. The goal of the Summit is to enable sharing between industry practitioners having practical experiences and challenges with software supply chain security and helping to form new collaborations. We conducted six-panel discussions based upon open-ended questions regarding software bill of materials (SBOMs), malicious commits, choosing new dependencies, build and deploy, the Executive Order 14028, and vulnerable dependencies. The open discussions enabled mutual sharing and shed light on common challenges that industry practitioners with practical experience face when securing their software supply chain. In this paper, we provide a summary of the Summit. 
    more » « less
  3. Recent years have shown increased cyber attacks targeting less secure elements in the software supply chain and causing fatal damage to businesses and organizations. Past well-known examples of software supply chain attacks are the SolarWinds or log4j incidents that have affected thousands of customers and businesses. The US government and industry are equally interested in enhancing software supply chain security. We conducted six panel discussions with a diverse set of 19 practitioners from industry. We asked them open-ended questions regarding SBOMs, vulnerable dependencies, malicious commits, build and deploy, the Executive Order, and standards compliance. The goal of this summit was to enable open discussions, mutual sharing, and shedding light on common challenges that industry practitioners with practical experience face when securing their software supply chain. This paper summarizes the summit held on September 30, 2022. 
    more » « less
  4. Modern software installation tools often use packages from more than one repository, presenting a unique set of security challenges. Such a configuration increases the risk of repository compromise and introduces attacks like dependency confusion and repository fallback. In this paper, we offer the first exploration of attacks that specifically target multiple repository update systems, and propose a unique defensive strategy we call articulated trust. Articulated trust is a principle that allows software installation tools to specify trusted developers and repositories for each package. To implement articulated trust, we built Artemis, a framework that introduces several new security techniques, such as per-package prioritization of repositories, multi-role delegations, multiple-repository consensus, and key pinning. These techniques allow for a greater diversity of trust relationships while eliminating the security risk of single points of failure. To evaluate Artemis, we examine attacks on software update systems from the Cloud Native Computing Foundation’s Catalog of Supply Chain Compromises, and find that the most secure configuration of Artemis can prevent all of them, compared to 14-59% for the best existing system. We also cite real-world deployments of Artemis that highlight its practicality. These include the JDF/Linux Foundation Uptane Standard that secures over-the-air updates for millions of automobiles, and TUF, which is used by many companies for secure software distribution. 
    more » « less
  5. The large amount of third-party packages available in fast-moving software ecosystems, such as Node.js/npm, enables attackers to compromise applications by pushing malicious updates to their package dependencies. Studying the npm repository, we observed that many packages in the npm repository that are used in Node.js applications perform only simple computations and do not need access to filesystem or network APIs. This offers the opportunity to enforce least-privilege design per package, protecting applications and package dependencies from malicious updates. We propose a lightweight permission system that protects Node.js applications by enforcing package permissions at runtime. We discuss the design space of solutions and show that our system makes a large number of packages much harder to be exploited, almost for free. 
    more » « less