skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: General mass variable flavor number scheme for Z boson production in association with a heavy quark at hadron colliders
We present a methodology to streamline implementation of massive-quark radiative contributions in calculations with a variable number of active partons in proton-proton collisions. The methodology introduces and heavy-quark parton distribution functions (PDFs) to implement calculations in the Aivazis–Collins–Olness–Tung (ACOT) factorization scheme and its simplified realization in various processes up to the next-to-the-next-to-leading order in the QCD coupling strength. Interpolation tables for bottom-quark subtraction and residual distributions for CT18 NLO and NNLO PDF ensembles are provided in the common LHAPDF6 format. A numerical calculation of Z -boson production with at least one b jet at the Large Hadron Collider beyond the lowest order in QCD is considered for illustration purposes. Published by the American Physical Society2024  more » « less
Award ID(s):
2412071 2310363 2014021
PAR ID:
10608036
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Physical Review D
Date Published:
Journal Name:
Physical Review D
Volume:
110
Issue:
11
ISSN:
2470-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A search for electroweak production of a single vectorlike T quark in association with a bottom ( b ) quark in the all-hadronic decay channel is presented. This search uses proton-proton collision data at s = 13 TeV collected by the CMS experiment at the CERN LHC during 2016–2018, corresponding to an integrated luminosity of 138 fb 1 . The T quark is assumed to have charge 2 / 3 and decay to a top ( t ) quark and a Higgs ( H ) or Z boson. Hadronic decays of the t quark and the H or Z boson are reconstructed from the kinematic properties of jets, including those containing b hadrons. No deviation from the standard model prediction is observed in the reconstructed t H and t Z invariant mass distributions. The 95% confidence level upper limits on the product of the production cross section and branching fraction of a T quark produced in association with a b quark and decaying via t H or t Z range from 1260 to 68 fb for T quark masses of 600–1200 GeV. © 2024 CERN, for the CMS Collaboration2024CERN 
    more » « less
  2. A search for pair production of scalar and vector leptoquarks (LQs) each decaying to a muon and a bottom quark is performed using proton-proton collision data collected at s = 13 TeV with the CMS detector at the CERN LHC, corresponding to an integrated luminosity of 138 fb 1 . No excess above standard model expectation is observed. Scalar (vector) LQs with masses less than 1810 (2120) GeV are excluded at 95% confidence level, assuming a 100% branching fraction of the LQ decaying to a muon and a bottom quark. These limits represent the most stringent to date. © 2024 CERN, for the CMS Collaboration2024CERN 
    more » « less
  3. We report an improved measurement of the valence u and d quark distributions from the forward-backward asymmetry in the Drell-Yan process using 8.6 fb 1 of data collected with the D0 detector in p p ¯ collisions at s = 1.96 . This analysis provides the values of new structure parameters that are directly related to the valence up and down quark distributions in the proton. In other experimental results measuring the quark content of the proton, d quark contributions are mixed with those from other quark flavors. In this measurement, the u and d quark contributions are separately extracted by applying a factorization of the QCD and electroweak portions of the forward-backward asymmetry. Published by the American Physical Society2024 
    more » « less
  4. A search is presented for baryon number violating interactions in top quark production and decay. The analysis uses data from proton-proton collisions at a center-of-mass energy of 13 TeV, collected with the CMS detector at the LHC with an integrated luminosity of 138 fb 1 . Candidate events are selected by requiring two oppositely charged leptons (electrons or muons) and exactly one jet identified as originating from a bottom quark. Multivariate discriminants are used to separate the signal from the background. No significant deviation from the standard model prediction is observed. Upper limits are placed on the strength of baryon number violating couplings. For the first time the production of single top quarks via baryon number violating interactions is studied. This allows the search to set the most stringent constraints to date on the branching fraction of the top quark decay to a lepton, an up-type quark ( u or c ), and a down-type quark ( d , s , or b ). The results improve the previous bounds by 3 to 6 orders of magnitude based on the fermion flavor combination of the baryon number violating interactions. © 2024 CERN, for the CMS Collaboration2024CERN 
    more » « less
  5. Energy correlators that describe energy-weighted distances between two or three particles in a hadronic jet are measured using an event sample of s = 13 TeV proton-proton collisions collected by the CMS experiment and corresponding to an integrated luminosity of 36.3 fb 1 . The measured distributions are consistent with the trends in the simulation that reveal two key features of the strong interaction: confinement and asymptotic freedom. By comparing the ratio of the measured three- and two-particle energy correlator distributions with theoretical calculations that resum collinear emissions at approximate next-to-next-to-leading-logarithmic accuracy matched to a next-to-leading-order calculation, the strong coupling is determined at the Z boson mass: α S ( m Z ) = 0.122 9 0.0050 + 0.0040 , the most precise α S ( m Z ) value obtained using jet substructure observables. © 2024 CERN, for the CMS Collaboration2024CERN 
    more » « less