Abstract Material properties strongly depend on the nature and concentration of defects. Characterizing these features may require nano- to atomic-scale resolution to establish structure–property relationships. 4D-STEM, a technique where diffraction patterns are acquired at a grid of points on the sample, provides a versatile method for highlighting defects. Computational analysis of the diffraction patterns with virtual detectors produces images that can map material properties. Here, using multislice simulations, we explore different virtual detectors that can be applied to the diffraction patterns that go beyond the binary response functions that are possible using ordinary STEM detectors. Using graphene and lead titanate as model systems, we investigate the application of virtual detectors to study local order and in particular defects. We find that using a small convergence angle with a rotationally varying detector most efficiently highlights defect signals. With experimental graphene data, we demonstrate the effectiveness of these detectors in characterizing atomic features, including vacancies, as suggested in simulations. Phase and amplitude modification of the electron beam provides another process handle to change image contrast in a 4D-STEM experiment. We demonstrate how tailored electron beams can enhance signals from short-range order and how a vortex beam can be used to characterize local symmetry. 
                        more » 
                        « less   
                    This content will become publicly available on June 1, 2026
                            
                            Automated analysis of the visual properties of superconducting detectors
                        
                    
    
            Abstract The testing and quality assurance of cryogenic superconducting detectors is a time- and labor-intensive process. As experiments deploy increasingly larger arrays of detectors, new methods are needed for performing this testing quickly. Here, we propose a process for flagging under-performing detector wafers before they are ever tested cryogenically. Detectors are imaged under an optical microscope, and computer vision techniques are used to analyze the images, searching for visual defects and other predictors of poor performance. Pipeline performance is verified via a suite of images with simulated defects, yielding a detection accuracy of 98.6%. Lastly, results from running the pipeline on prototype microwave kinetic inductance detectors from the planned SPT-3G+ experiment are presented. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10608104
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Journal of Instrumentation
- Volume:
- 20
- Issue:
- 06
- ISSN:
- 1748-0221
- Page Range / eLocation ID:
- P06011
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Summary We investigate the challenges of building an end‐to‐end cloud pipeline for real‐time intelligent visual inspection system for use in automotive manufacturing. Current methods of visual detection in automotive assembly are highly labor intensive, and thus prone to errors. An automated process is sought that can operate within the real‐time constraints of the assembly line and can reduce errors. Components of the cloud pipeline include capture of a large set of high‐definition images from a camera setup at the assembly location, transfer and storage of the images as needed, execution of object detection, and notification to a human operator when a fault is detected. The end‐to‐end execution must complete within a fixed time frame before the next car arrives in the assembly line. In this article, we report the design, development, and experimental evaluation of the tradeoffs of performance, accuracy, and scalability for a cloud system.more » « less
- 
            In laser powder bed fusion processes, keyholes are the gaseous cavities formed where laser interacts with metal, and their morphologies play an important role in defect formation and the final product quality. The in-situ X-ray imaging technique can monitor the keyhole dynamics from the side and capture keyhole shapes in the X-ray image stream. Keyhole shapes in X-ray images are then often labeled by humans for analysis, which increasingly involves attempting to correlate keyhole shapes with defects using machine learning. However, such labeling is tedious, time-consuming, error-prone, and cannot be scaled to large data sets. To use keyhole shapes more readily as the input to machine learning methods, an automatic tool to identify keyhole regions is desirable. In this paper, a deep-learning-based computer vision tool that can automatically segment keyhole shapes out of X-ray images is presented. The pipeline contains a filtering method and an implementation of the BASNet deep learning model to semantically segment the keyhole morphologies out of X-ray images. The presented tool shows promising average accuracy of 91.24% for keyhole area, and 92.81% for boundary shape, for a range of test dataset conditions in Al6061 (and one AliSi10Mg) alloys, with 300 training images/labels and 100 testing images for each trial. Prospective users may apply the presently trained tool or a retrained version following the approach used here to automatically label keyhole shapes in large image sets.more » « less
- 
            Abstract In the modern industrial setting, there is an increasing demand for all types of sensors. The demand for both the quantity and quality of sensors is increasing annually. Our research focuses on thin-film nitrate sensors in particular, and it seeks to provide a robust method to monitor the quality of the sensors while reducing the cost of production. We are researching an image-based machine learning method to allow for real-time quality assessment of every sensor in the manufacturing pipeline. It opens up the possibility of real-time production parameter adjustments to enhance sensor performance. This technology has the potential to significantly reduce the cost of quality control and improve sensor quality at the same time. Previous research has proven that the texture of the topical layer (ion-selective membrane (ISM) layer) of the sensor directly correlates with the performance of the sensor. Our method seeks to use the correlation so established to train a learning-based system to predict the performance of any given sensor from a still photo of the sensor active region, i.e. the ISM. This will allow for the real-time assessment of every sensor instead of sample testing. Random sample testing is both costly in time and labor, and therefore, it does not account for all of the individual sensors. Sensor measurement is a crucial portion of the data collection process. To measure the performance of the sensors, the sensors are taken to a specialized lab to be measured for performance. During the measurement process, noise and error are unavoidable; therefore, we generated credibility data based on the performance data to show the reliability of each sensor performance signal at each sample time. In this paper, we propose a machine learning based method to predict sensor performance using image features extracted from the non-contact sensor images guided by the credibility data. This will eliminate the need to test every sensor as it is manufactured, which is not practical in a high-speed roll-to-roll setting, thus truely enabling a certify as built framework.more » « less
- 
            ABSTRACT Traditional software reliability growth models (SRGM) characterize defect discovery with the Non‐Homogeneous Poisson Process (NHPP) as a function of testing time or effort. More recently, covariate NHPP SRGM models have substantially improved tracking and prediction of the defect discovery process by explicitly incorporating discrete multivariate time series on the amount of each underlying testing activity performed in successive intervals. Both classes of NHPP models with and without covariates are parametric in nature, imposing assumptions on the defect discovery process, and, while neural networks have been applied to SRGM models without covariates, no such studies have been applied in the context of covariate SRGM models. Therefore, this paper assesses the effectiveness of neural networks in predicting the software defect discovery process, incorporating covariates. Three types of neural networks are considered, including (i) recurrent neural networks (RNNs), (ii) long short‐term memory (LSTM), and (iii) gated recurrent unit (GRU), which are then compared with covariate models to validate tracking and predictive accuracy. Our results suggest that GRU achieved better overall goodness‐of‐fit, such as approximately 3.22 and 1.10 times smaller predictive mean square error, and 5.33 and 1.22 times smaller predictive ratio risk in DS1G and DS2G data sets, respectively, compared to covariate models when of the data is used for training. Moreover, to provide an objective comparison, three different proportions for training data splits were employed to illustrate the advancements between the top‐performing covariate NHPP model and the neural network, in which GRU illustrated a better performance over most of the scenarios. Thus, the neural network model with gated recurrent units may be a suitable alternative to track and predict the number of defects based on covariates associated with the software testing process.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
