We outline a general derivation of holographic duality between “TQFT gravity” — the path integral of a 3d TQFT summed over different topologies — and an ensemble of boundary 2d CFTs. The key idea is to place the boundary ensemble on a Riemann surface of very high genus, where the duality trivializes. The duality relation at finite genus is then obtained by genus reduction. Our derivation is generic and does not rely on an explicit form of the bulk or boundary partition functions. It guarantees unitarity and suggests that the bulk sum should include all possible topologies. In the case of Abelian Chern-Simons theory with compact gauge group we argue that the weights of the boundary ensemble are equal, while the bulk sum reduces to a finite sum over equivalence classes of topologies, represented by handlebodies with possible line defects.
more »
« less
This content will become publicly available on April 1, 2026
Global Symmetries, Code Ensembles, and Sums over Geometries
We consider Abelian topological quantum field theories (TQFTs) in 3D and show that gaugings of invertible global symmetries naturally give rise to additive codes. These codes emerge as nonanomalous subgroups of the 1-form symmetry group, parametrizing the fusion rules of condensable TQFT anyons. The boundary theories dual to TQFTs with a maximal symmetry subgroup gauged, i.e., with the corresponding anyons condensed, are “code” conformal field theories (CFTs). This observation bridges together, in the holographic sense, results on 1-form symmetries of 3D TQFTs with developments connecting codes to 2D CFTs. Building on this relationship, we proceed to consider the ensemble of maximal gaugings (topological boundary conditions) in a general, not necessarily Abelian 3D TQFT, and propose that the resulting ensemble of boundary CFTs has a holographic description as a gravitational theory: the bulk TQFT summed over topologies.
more »
« less
- Award ID(s):
- 2310426
- PAR ID:
- 10608113
- Publisher / Repository:
- Physical Review Journals
- Date Published:
- Journal Name:
- Physical Review Letters
- Volume:
- 134
- Issue:
- 15
- ISSN:
- 0031-9007
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A long-standing problem in the study of topological phases of matter has been to understand the types of fractional topological insulator (FTI) phases possible in 3+1 dimensions. Unlike ordinary topological insulators of free fermions, FTI phases are characterized by fractional 𝜃-angles,long-range entanglement, and fractionalization. Starting from a simple family of ℤ_N lattice gauge theories due to Cardy and Rabinovici, we develop a class of FTI phases based on the physical mechanism of oblique confinement and the modern language of generalized global symmetries. We dub these phases oblique topological insulators. Oblique TIs arise when dyons—bound states of electric charges and monopoles—condense, leading to FTI phases characterized by topological order, emergent one-forms symmetries, and gapped boundary states not realizable in 2+1-D alone.Based on the lattice gauge theory, we present continuum topological quantum field theories (TQFTs) for oblique TI phases involving fluctuating one-form and two-form gauge fields. We show explicitly that these TQFTs capture both the generalized global symmetries and topological orders seen in the lattice gauge theory. We also demonstrate that these theories exhibit a universal “generalized magneto-electric effect” in the presence of two-form background gauge fields. Moreover,we characterize the possible boundary topological orders of oblique TIs,finding a new set of boundary states not studied previously for these kinds of TQFTs.more » « less
-
A<sc>bstract</sc> Gauging is a powerful operation on symmetries in quantum field theory (QFT), as it connects distinct theories and also reveals hidden structures in a given theory. We initiate a systematic investigation of gauging discrete generalized symmetries in two-dimensional QFT. Such symmetries are described by topological defect lines (TDLs) which obey fusion rules that are non-invertible in general. Despite this seemingly exotic feature, all well-known properties in gauging invertible symmetries carry over to this general setting, which greatly enhances both the scope and the power of gauging. This is established by formulating generalized gauging in terms of topological interfaces between QFTs, which explains the physical picture for the mathematical concept of algebra objects and associated module categories over fusion categories that encapsulate the algebraic properties of generalized symmetries and their gaugings. This perspective also provides simple physical derivations of well-known mathematical theorems in category theory from basic axiomatic properties of QFT in the presence of such interfaces. We discuss a bootstrap-type analysis to classify such topological interfaces and thus the possible generalized gaugings and demonstrate the procedure in concrete examples of fusion categories. Moreover we present a number of examples to illustrate generalized gauging and its properties in concrete conformal field theories (CFTs). In particular, we identify the generalized orbifold groupoid that captures the structure of fusion between topological interfaces (equivalently sequential gaugings) as well as a plethora of new self-dualities in CFTs under generalized gaugings.more » « less
-
A<sc>bstract</sc> We provide a precise relation between an ensemble of Narain conformal field theories (CFTs) with central chargec=n, and a sum of (U(1) × U(1))nChern-Simons theories on different handlebody topologies. We begin by reviewing the general relation of additive codes to Narain CFTs. Then we describe a holographic duality between any given Narain theory and a pure Chern-Simons theory on a handlebody manifold. We proceed to consider an ensemble of Narain theories, defined in terms of an ensemble of codes of lengthnoverℤk × ℤkfor primek. We show that averaging over this ensemble is holographically dual to a level-k(U(1) × U(1))nChern-Simons theory, summed over a finite number of inequivalent classes of handlebody topologies. In the limit of largekthe ensemble approaches the ensemble of all Narain theories, and its bulk dual becomes equivalent to “U(1)-gravity” — the sum of the pertubative part of the Chern-Simons wavefunction over all possible handlebodies — providing a bulk microscopic definition for this theory. Finally, we reformulate the sum over handlebodies in terms of Hecke operators, paving the way for generalizations.more » « less
-
In this paper we discuss gauging one-form symmetries in two-dimensional theories. The existence of a global one-form symmetry in two dimensions typically signals a violation of cluster decomposition — an issue resolved by the observation that such theories decompose into disjoint unions, a result that has been applied to, for example, Gromov–Witten theory and gauged linear sigma model phases. In this paper we describe how gauging one-form symmetries in two-dimensional theories can be used to select particular elements of that disjoint union, effectively undoing decomposition. We examine such gaugings explicitly in examples involving orbifolds, nonsupersymmetric pure Yang–Mills theories, and supersymmetric gauge theories in two dimensions. Along the way, we learn explicit concrete details of the topological configurations that path integrals sum over when gauging a one-form symmetry, and we also uncover “hidden” one-form symmetries.more » « less
An official website of the United States government
