We consider Abelian topological quantum field theories (TQFTs) in 3D and show that gaugings of invertible global symmetries naturally give rise to additive codes. These codes emerge as nonanomalous subgroups of the 1-form symmetry group, parametrizing the fusion rules of condensable TQFT anyons. The boundary theories dual to TQFTs with a maximal symmetry subgroup gauged, i.e., with the corresponding anyons condensed, are “code” conformal field theories (CFTs). This observation bridges together, in the holographic sense, results on 1-form symmetries of 3D TQFTs with developments connecting codes to 2D CFTs. Building on this relationship, we proceed to consider the ensemble of maximal gaugings (topological boundary conditions) in a general, not necessarily Abelian 3D TQFT, and propose that the resulting ensemble of boundary CFTs has a holographic description as a gravitational theory: the bulk TQFT summed over topologies.
more »
« less
Gauging non-invertible symmetries: topological interfaces and generalized orbifold groupoid in 2d QFT
A<sc>bstract</sc> Gauging is a powerful operation on symmetries in quantum field theory (QFT), as it connects distinct theories and also reveals hidden structures in a given theory. We initiate a systematic investigation of gauging discrete generalized symmetries in two-dimensional QFT. Such symmetries are described by topological defect lines (TDLs) which obey fusion rules that are non-invertible in general. Despite this seemingly exotic feature, all well-known properties in gauging invertible symmetries carry over to this general setting, which greatly enhances both the scope and the power of gauging. This is established by formulating generalized gauging in terms of topological interfaces between QFTs, which explains the physical picture for the mathematical concept of algebra objects and associated module categories over fusion categories that encapsulate the algebraic properties of generalized symmetries and their gaugings. This perspective also provides simple physical derivations of well-known mathematical theorems in category theory from basic axiomatic properties of QFT in the presence of such interfaces. We discuss a bootstrap-type analysis to classify such topological interfaces and thus the possible generalized gaugings and demonstrate the procedure in concrete examples of fusion categories. Moreover we present a number of examples to illustrate generalized gauging and its properties in concrete conformal field theories (CFTs). In particular, we identify the generalized orbifold groupoid that captures the structure of fusion between topological interfaces (equivalently sequential gaugings) as well as a plethora of new self-dualities in CFTs under generalized gaugings.
more »
« less
- Award ID(s):
- 2210420
- PAR ID:
- 10632428
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2024
- Issue:
- 3
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper we discuss gauging one-form symmetries in two-dimensional theories. The existence of a global one-form symmetry in two dimensions typically signals a violation of cluster decomposition — an issue resolved by the observation that such theories decompose into disjoint unions, a result that has been applied to, for example, Gromov–Witten theory and gauged linear sigma model phases. In this paper we describe how gauging one-form symmetries in two-dimensional theories can be used to select particular elements of that disjoint union, effectively undoing decomposition. We examine such gaugings explicitly in examples involving orbifolds, nonsupersymmetric pure Yang–Mills theories, and supersymmetric gauge theories in two dimensions. Along the way, we learn explicit concrete details of the topological configurations that path integrals sum over when gauging a one-form symmetry, and we also uncover “hidden” one-form symmetries.more » « less
-
Generalized global symmetries, in particular non-invertible and categorical symmetries, have become a focal point in the recent study of quantum field theory (QFT). In this paper, we investigate aspects of symmetry topological field theories (SymTFTs) and anomalies of non-invertible symmetries for 2D QFTs from a string theory perspective. Our primary focus is on an infinite class of 2D QFTs engineered on D1-branes probing toric Calabi-Yau 4-fold singularities. We derive 3D SymTFTs from the topological sector of IIB supergravity and discuss the resulting 2D QFTs, which can be intrinsically relative or absolute. For intrinsically relative QFTs, we propose a sufficient condition for them to exist. For absolute QFTs, we show that they exhibit non-invertible symmetries with an elegant brane origin. Furthermore, we find that these non-invertible symmetries can suffer from anomalies, which we discuss from a top-down perspective. Explicit examples are provided, including theories for including theories for Y(p,k)(ℙ2), Y(2,0)(ℙ1×ℙ1), and ℂ4/ℤ4 geometries.more » « less
-
A<sc>bstract</sc> In this paper we discuss gauging noninvertible zero-form symmetries in two dimensions, extending our previous work. Specifically, in this work we discuss more general gauged noninvertible symmetries in which the noninvertible symmetry is not multiplicity free, and discuss the case of Rep(A4) in detail. We realize Rep(A4) gaugings for thec= 1 CFT at the exceptional point in the moduli space and find new self-duality under gauging a certain non-group algebra object, leading to a larger noninvertible symmetry Rep(SL(2, ℤ3)). We also discuss more general examples of decomposition in two-dimensional gauge theories with trivially-acting gauged noninvertible symmetries.more » « less
-
We investigate fractionalization of non-invertible symmetry in (2+1)D topological orders. We focus on coset non-invertible symmetries obtained by gauging non-normal subgroups of invertible0 -form symmetries. These symmetries can arise as global symmetries in quantum spin liquids, given by the quotient of the projective symmetry group by a non-normal subgroup as invariant gauge group. We point out that such coset non-invertible symmetries in topological orders can exhibit symmetry fractionalization: each anyon can carry a “fractional charge” under the coset non-invertible symmetry given by a gauge invariant superposition of fractional quantum numbers. We present various examples using field theories and quantum double lattice models, such as fractional quantum Hall systems with charge conjugation symmetry gauged and finite group gauge theory from gauging a non-normal subgroup. They include symmetry enrichedS_3 andO(2) gauge theories. We show that such systems have a fractionalized continuous non-invertible coset symmetry and a well-defined electric Hall conductance. The coset symmetry enforces a gapless edge state if the boundary preserves the continuous non-invertible symmetry. We propose a general approach for constructing coset symmetry defects using a “sandwich” construction: non-invertible symmetry defects can generally be constructed from an invertible defect sandwiched by condensation defects. The anomaly free condition for finite coset symmetry is also identified.more » « less
An official website of the United States government

