skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Quantum dynamics in Krylov space: Methods and applications
The dynamics of quantum systems unfolds within a subspace of the state space or operator space, known as the Krylov space. This review presents the use of Krylov subspace methods to provide an efficient description of quantum evolution and quantum chaos, with emphasis on nonequilibrium phenomena of many-body systems with a large Hilbert space. It provides a comprehensive update of recent developments, focused on the quantum evolution of operators in the Heisenberg picture as well as pure and mixed states. It further explores the notion of Krylov complexity and associated metrics as tools for quantifying operator growth, their bounds by generalized quantum speed limits, the universal operator growth hypothesis, and its relation to quantum chaos, scrambling, and generalized coherent states. A comparison of several generalizations of the Krylov construction for open quantum systems is presented. A closing discussion addresses the application of Krylov subspace methods in quantum field theory, holog- raphy, integrability, quantum control, and quantum computing, as well as current open problems.  more » « less
Award ID(s):
2310426
PAR ID:
10608120
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Physics Reports
Volume:
1125-1128
Issue:
C
ISSN:
0370-1573
Page Range / eLocation ID:
1 to 82
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> We study Krylov complexity in various models of quantum field theory: free massive bosons and fermions on flat space and on spheres, holographic models, and lattice models with a UV-cutoff. In certain cases, we observe asymptotic behavior in Lanczos coefficients that extends beyond the previously observed universality. We confirm that, in all cases, the exponential growth of Krylov complexity satisfies the conjectured inequality, which generalizes the Maldacena-Shenker-Stanford bound on chaos. We discuss the temperature dependence of Lanczos coefficients and note that the relationship between the growth of Lanczos coefficients and chaos may only hold for the sufficiently late, truly asymptotic regime, governed by physics at the UV cutoff. Contrary to previous suggestions, we demonstrate scenarios in which Krylov complexity in quantum field theory behaves qualitatively differently from holographic complexity. 
    more » « less
  2. null (Ed.)
    In this paper, we study non-equilibrium dynamics induced by a sudden quench of strongly correlated Hamiltonians with all-to-all interactions. By relying on a Sachdev-Ye-Kitaev (SYK)-based quench protocol, we show that the time evolution of simple spin-spin correlation functions is highly sensitive to the degree of k-locality of the corresponding operators, once an appropriate set of fundamental fields is identified. By tracking the time-evolution of specific spin-spin correlation functions and their decay, we argue that it is possible to distinguish between operator-hopping and operator growth dynamics; the latter being a hallmark of quantum chaos in many-body quantum systems. Such an observation, in turn, could constitute a promising tool to probe the emergence of chaotic behavior, rather accessible in state-of-the-art quench setups. 
    more » « less
  3. Ye, Qiang (Ed.)
    An inexact rational Krylov subspace method is studied to solve large-scale nonsymmetric eigenvalue problems. Each iteration (outer step) of the rational Krylov subspace method requires solution to a shifted linear system to enlarge the subspace, performed by an iterative linear solver for large-scale problems. Errors are introduced at each outer step if these linear systems are solved approx- imately by iterative methods (inner step), and they accumulate in the rational Krylov subspace. In this article, we derive an upper bound on the errors intro- duced at each outer step to maintain the same convergence as exact rational Krylov subspace method for approximating an invariant subspace. Since this bound is inversely proportional to the current eigenresidual norm of the target invariant subspace, the tolerance of iterative linear solves at each outer step can be relaxed with the outer iteration progress. A restarted variant of the inexact rational Krylov subspace method is also proposed. Numerical experiments show the effectiveness of relaxing the inner tolerance to save computational cost. 
    more » « less
  4. This paper concerns the theory and development of inexact rational Krylov subspace methods for approximating the action of a function of a matrix f(A) to a column vector b. At each step of the rational Krylov subspace methods, a shifted linear system of equations needs to be solved to enlarge the subspace. For large-scale problems, such a linear system is usually solved approximately by an iterative method. The main question is how to relax the accuracy of these linear solves without negatively affecting the convergence of the approximation of f(A)b. Our insight into this issue is obtained by exploring the residual bounds for the rational Krylov subspace approximations of f(A)b, based on the decaying behavior of the entries in the first column of certain matrices of A restricted to the rational Krylov subspaces. The decay bounds for these entries for both analytic functions and Markov functions can be efficiently and accurately evaluated by appropriate quadrature rules. A heuristic based on these bounds is proposed to relax the tolerances of the linear solves arising in each step of the rational Krylov subspace methods. As the algorithm progresses toward convergence, the linear solves can be performed with increasingly lower accuracy and computational cost. Numerical experiments for large nonsymmetric matrices show the effectiveness of the tolerance relaxation strategy for the inexact linear solves of rational Krylov subspace methods. 
    more » « less
  5. Control of quantum phenomena would allow for expanding control theory from classical systems to microscopic ones whose behavior is dictated by quantum mechanics. A current goal of quantum control is to develop a systematic methodology for the manipulation of systems. The approach typically used to solve dynamic quantum systems is useful to analyze characteristics of a system represented by a defined operator. The squeeze operator's actions are characterized by finding the time evolution operator using the Wei-Norman method on the associated Hamiltonian and applying this to number (Fock) states, coherent states, and Schrodinger cat states. This specific case analyzing the Squeeze operator shows that the Wei-Norman method to find time-evolution operator can reveal the dynamics of any system with an associated Lie Algebra basis. Documenting a variety of initial states and initial parameters in a library of cases provides a foundation to achieving greater control in experimental applications as well. *I would like to thank Brigham Young University for hosting this Research Experience for Undergraduates program and the National Science Foundation for funding this research through grant #1757998. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2018.4CS.L04.6 
    more » « less