skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inexact rational Krylov subspace methods for approximating the action of functions of matrices
This paper concerns the theory and development of inexact rational Krylov subspace methods for approximating the action of a function of a matrix f(A) to a column vector b. At each step of the rational Krylov subspace methods, a shifted linear system of equations needs to be solved to enlarge the subspace. For large-scale problems, such a linear system is usually solved approximately by an iterative method. The main question is how to relax the accuracy of these linear solves without negatively affecting the convergence of the approximation of f(A)b. Our insight into this issue is obtained by exploring the residual bounds for the rational Krylov subspace approximations of f(A)b, based on the decaying behavior of the entries in the first column of certain matrices of A restricted to the rational Krylov subspaces. The decay bounds for these entries for both analytic functions and Markov functions can be efficiently and accurately evaluated by appropriate quadrature rules. A heuristic based on these bounds is proposed to relax the tolerances of the linear solves arising in each step of the rational Krylov subspace methods. As the algorithm progresses toward convergence, the linear solves can be performed with increasingly lower accuracy and computational cost. Numerical experiments for large nonsymmetric matrices show the effectiveness of the tolerance relaxation strategy for the inexact linear solves of rational Krylov subspace methods.  more » « less
Award ID(s):
2111496
PAR ID:
10528541
Author(s) / Creator(s):
;
Publisher / Repository:
Kent State University and Johann Radon Institute (RICAM)
Date Published:
Journal Name:
ETNA - Electronic Transactions on Numerical Analysis
Volume:
58
ISSN:
1068-9613
Page Range / eLocation ID:
538 to 567
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ye, Qiang (Ed.)
    An inexact rational Krylov subspace method is studied to solve large-scale nonsymmetric eigenvalue problems. Each iteration (outer step) of the rational Krylov subspace method requires solution to a shifted linear system to enlarge the subspace, performed by an iterative linear solver for large-scale problems. Errors are introduced at each outer step if these linear systems are solved approx- imately by iterative methods (inner step), and they accumulate in the rational Krylov subspace. In this article, we derive an upper bound on the errors intro- duced at each outer step to maintain the same convergence as exact rational Krylov subspace method for approximating an invariant subspace. Since this bound is inversely proportional to the current eigenresidual norm of the target invariant subspace, the tolerance of iterative linear solves at each outer step can be relaxed with the outer iteration progress. A restarted variant of the inexact rational Krylov subspace method is also proposed. Numerical experiments show the effectiveness of relaxing the inner tolerance to save computational cost. 
    more » « less
  2. Approximating the action of a matrix function $$f(\vec{A})$$ on a vector $$\vec{b}$$ is an increasingly important primitive in machine learning, data science, and statistics, with applications such as sampling high dimensional Gaussians, Gaussian process regression and Bayesian inference, principle component analysis, and approximating Hessian spectral densities. Over the past decade, a number of algorithms enjoying strong theoretical guarantees have been proposed for this task. Many of the most successful belong to a family of algorithms called \emph{Krylov subspace methods}. Remarkably, a classic Krylov subspace method, called the Lanczos method for matrix functions (Lanczos-FA), frequently outperforms newer methods in practice. Our main result is a theoretical justification for this finding: we show that, for a natural class of \emph{rational functions}, Lanczos-FA matches the error of the best possible Krylov subspace method up to a multiplicative approximation factor. The approximation factor depends on the degree of $f(x)$'s denominator and the condition number of $$\vec{A}$$, but not on the number of iterations $$k$$. Our result provides a strong justification for the excellent performance of Lanczos-FA, especially on functions that are well approximated by rationals, such as the matrix square root. 
    more » « less
  3. A flexible extended Krylov subspace method (F-EKSM) is considered for numerical approximation of the action of a matrix function f(A) to a vector b, where the function f is of Markov type. F-EKSM has the same framework as the extended Krylov subspace method (EKSM), replacing the zero pole in EKSM with a properly chosen fixed nonzero pole. For symmetric positive definite matrices, the optimal fixed pole is derived for F-EKSM to achieve the lowest possible upper bound on the asymptotic convergence factor, which is lower than that of EKSM. The analysis is based on properties of Faber polynomials of A and (I−A/s)−1. For large and sparse matrices that can be handled efficiently by LU factorizations, numerical experiments show that F-EKSM and a variant of RKSM based on a small number of fixed poles outperform EKSM in both storage and runtime, and usually have advantages over adaptive RKSM in runtime. 
    more » « less
  4. Abstract This paper solves the rational noncommutative analogue of Hilbert’s 17th problem: if a noncommutative rational function is positive semidefinite on all tuples of Hermitian matrices in its domain, then it is a sum of Hermitian squares of noncommutative rational functions. This result is a generalisation and culmination of earlier positivity certificates for noncommutative polynomials or rational functions without Hermitian singularities. More generally, a rational Positivstellensatz for free spectrahedra is given: a noncommutative rational function is positive semidefinite or undefined at every matricial solution of a linear matrix inequality $$L\succeq 0$$ if and only if it belongs to the rational quadratic module generated by L . The essential intermediate step toward this Positivstellensatz for functions with singularities is an extension theorem for invertible evaluations of linear matrix pencils. 
    more » « less
  5. Krylov subspace methods are a ubiquitous tool for computing near-optimal rank kk approximations of large matrices. While "large block" Krylov methods with block size at least kk give the best known theoretical guarantees, block size one (a single vector) or a small constant is often preferred in practice. Despite their popularity, we lack theoretical bounds on the performance of such "small block" Krylov methods for low-rank approximation. We address this gap between theory and practice by proving that small block Krylov methods essentially match all known low-rank approximation guarantees for large block methods. Via a black-box reduction we show, for example, that the standard single vector Krylov method run for t iterations obtains the same spectral norm and Frobenius norm error bounds as a Krylov method with block size ℓ≥kℓ≥k run for O(t/ℓ)O(t/ℓ) iterations, up to a logarithmic dependence on the smallest gap between sequential singular values. That is, for a given number of matrix-vector products, single vector methods are essentially as effective as any choice of large block size. By combining our result with tail-bounds on eigenvalue gaps in random matrices, we prove that the dependence on the smallest singular value gap can be eliminated if the input matrix is perturbed by a small random matrix. Further, we show that single vector methods match the more complex algorithm of [Bakshi et al. `22], which combines the results of multiple block sizes to achieve an improved algorithm for Schatten pp-norm low-rank approximation. 
    more » « less