skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: Subsystem entropy in 2d CFT and KdV ETH
We study subsystem entropies in 2d CFTs for subsystems constituting a finite fraction of the full system. We focus on the extensive contribution, which scales linearly with the subsystem size in the thermodynamic limit. We employ the so-called diagonal approximation to evaluate subsystem entropy for chaotic CFTs in the thermal state (canonical ensemble), the microcanonical ensemble, and in a primary state, matching previously known results. We then proceed to find analytic expressions for the subsystem entropy at leading order in c , when the global CFT state is the KdV-generalized Gibbs ensemble or the KdV-microcanonical ensemble. Previous studies of primary eigenstates have shown that, akin to the fixed-area states in AdS/CFT, the corresponding subsystem entanglement spectrum is flat. This behavior is seemingly in sharp contradiction with that of the thermal (microcanonical) state, and thus in apparent contradiction with the subsystem eigenstate thermalization hypothesis (ETH). In this paper, we resolve this issue by comparing the primary state with the KdV-(micro)canonical ensemble. We show that the results are consistent with the KdV-generalized version of the subsystem ETH, in which local properties of quantum eigenstates are governed by their values of conserved KdV charges. Our paper solidifies evidence for the KdV-generalized ETH in 2d CFTs and emphasizes Rényi entropy as a sensitive probe of the reduced-density matrix.  more » « less
Award ID(s):
2310426
PAR ID:
10608121
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Physical Review Journals
Date Published:
Journal Name:
Physical Review Research
Volume:
7
Issue:
2
ISSN:
2643-1564
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The eigenstate thermalization hypothesis (ETH) in chaotic two-dimensional CFTs is subtle due to the presence of infinitely many conserved KdV charges. Previous works have shown that primary CFT eigenstates exhibit a flat entanglement spectrum, which is very different from that of the microcanonical ensemble. This appears to contradict conventional ETH, which does not account for KdV charges. In a companion paper \cite{1}, we resolve this discrepancy by analyzing the subsystem entropy of a chaotic CFT in KdV-generalized Gibbs and microcanonical ensembles. In this paper, we perform parallel computations within the framework of AdS/CFT. We focus on the high-density limit, which corresponds to the thermodynamic limit in conformal theories. In this regime, holographic Rényi entropy can be calculated using the so-called *gluing construction*. We specifically study the KdV-generalized microcanonical ensemble where the densities of the first two KdV charges are fixed: $$ \langle Q_1 \rangle = q_1, \quad \langle Q_3 \rangle = q_3 $$ with the condition $$q_3 - q_1^2 \ll q_1^2$$. In this regime, we find that the refined Rényi entropy $$\tilde{S}_n$$ becomes independent of $$n$$ for $$n > n_{\text{cut}}$$, where $$n_{\text{cut}}$$ depends on $$q_1$$ and $$q_3$$. By taking the primary state limit $$q_3 \to q_1^2$$, we recover the flat entanglement spectrum characteristic of fixed-area states, consistent with the behavior of primary states. This result supports the consistency of KdV-generalized ETH in 2d CFTs. 
    more » « less
  2. A<sc>bstract</sc> The eigenstate thermalization hypothesis (ETH) is the leading conjecture for the emergence of statistical mechanics in generic isolated quantum systems and is formulated in terms of the matrix elements of operators. An analog known as the ergodic bipartition (EB) describes entanglement and locality and is formulated in terms of the components of eigenstates. In this paper, we significantly generalize the EB and unify it with the ETH, extending the EB to study higher correlations and systems out of equilibrium. Our main result is a diagrammatic formalism that computes arbitrary correlations between eigenstates and operators based on a recently uncovered connection between the ETH and free probability theory. We refer to the connected components of our diagrams as generalized free cumulants. We apply our formalism in several ways. First, we focus on chaotic eigenstates and establish the so-called subsystem ETH and the Page curve as consequences of our construction. We also improve known calculations for thermal reduced density matrices and comment on an inherently free probabilistic aspect of the replica approach to entanglement entropy previously noticed in a calculation for the Page curve of an evaporating black hole. Next, we turn to chaotic quantum dynamics and demonstrate the ETH as a sufficient mechanism for thermalization, in general. In particular, we show that reduced density matrices relax to their equilibrium form and that systems obey the Page curve at late times. We also demonstrate that the different phases of entanglement growth are encoded in higher correlations of the EB. Lastly, we examine the chaotic structure of eigenstates and operators together and reveal previously overlooked correlations between them. Crucially, these correlations encode butterfly velocities, a well-known dynamical property of interacting quantum systems. 
    more » « less
  3. null (Ed.)
    A bstract Studies of Eigenstate Thermalization Hypothesis (ETH) in two-dimensional CFTs call for calculation of the expectation values of local operators in highly excited energy eigenstates. This can be done efficiently by representing zero modes of these operators in terms of the Virasoro algebra generators. In this paper we present a pedagogical introduction explaining how this calculation can be performed analytically or using computer algebra. We illustrate the computation of zero modes by a number of examples and list explicit expressions for all local operators from the vacuum family with the dimension of less or equal than eight. Finally, we derive an explicit expression for the quantum KdV generator Q 7 in terms of the Virasoro algebra generators. The obtained results can be used for quantitative studies of ETH at finite value of central charge. 
    more » « less
  4. We study non-invertible defects in two-dimensionalSNorbifold CFTs. We construct universal defects which do not depend on the details of the seed CFT and hence exist in any orbifold CFT. Additionally, we investigate non-universal defects arising from the topological defects of the seed CFT. We argue that there exist universal defects that are non-trivial in the large-Nlimit, making them relevant for the AdS3/CFT2correspondence. We then focus on AdS3×S3×$$ {\mathcal{M}}_4 $$ M 4 with one unit of NS-NS flux and propose an explicit realization of these defects on the worldsheet. 
    more » « less
  5. A<sc>bstract</sc> We investigate spin-refined partition functions in AdS/CFT using Euclidean gravitational path integrals. We construct phase diagrams forZX= Tr(e−βHX) in various dimensions and for different choices of discrete isometryX, discovering rich structures at finite temperature. WhenXis a reflection,ZXcounts the difference between the number of even- and odd-spin microstates. The high-temperature regime is universally dominated by$$ \mathcal{CRT} $$ CRT -twisted black holes in any dimension, and in odd spacetime dimensions we examine whether complex rotating black hole solutions can contribute to spin-refined observables or potentially dominate at finite temperature. We also analyze the microcanonical ensemble. There the leading contribution almost always comes from rotating black holes, showing that the two ensembles are not necessarily equivalent. 
    more » « less