skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Cycas genome and the early evolution of seed plants
Abstract Cycads represent one of the most ancient lineages of living seed plants. Identifying genomic features uniquely shared by cycads and other extant seed plants, but not non-seed-producing plants, may shed light on the origin of key innovations, as well as the early diversification of seed plants. Here, we report the 10.5-Gb reference genome ofCycas panzhihuaensis, complemented by the transcriptomes of 339 cycad species. Nuclear and plastid phylogenomic analyses strongly suggest that cycads andGinkgoform a clade sister to all other living gymnosperms, in contrast to mitochondrial data, which place cycads alone in this position. We found evidence for an ancient whole-genome duplication in the common ancestor of extant gymnosperms. TheCycasgenome contains four homologues of thefitDgene family that were likely acquired via horizontal gene transfer from fungi, and these genes confer herbivore resistance in cycads. The male-specific region of the Y chromosome ofC. panzhihuaensiscontains a MADS-box transcription factor expressed exclusively in male cones that is similar to a system reported inGinkgo, suggesting that a sex determination mechanism controlled by MADS-box genes may have originated in the common ancestor of cycads andGinkgo. TheC. panzhihuaensisgenome provides an important new resource of broad utility for biologists.  more » « less
Award ID(s):
1943371
PAR ID:
10608349
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Nature
Date Published:
Journal Name:
Nature Plants
Volume:
8
Issue:
4
ISSN:
2055-0278
Page Range / eLocation ID:
389 to 401
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Although the seed is a key morphological innovation, its origin remains unknown and molecular data outside angiosperms is still limited. Ginkgo biloba, with a unique place in plant evolution, being one of the first extant gymnosperms where seeds evolved, can testify to the evolution and development of the seed. Initially, to better understand the development of the ovules in Ginkgo biloba ovules, we performed spatio-temporal expression analyses in seeds at early developing stages, of six candidate gene homologues known in angiosperms: WUSCHEL, AINTEGUMENTA, BELL1, KANADI, UNICORN, and C3HDZip . Surprisingly, the expression patterns of most these ovule homologues indicate that they are not wholly conserved between angiosperms and Ginkgo biloba . Consistent with previous studies on early diverging seedless plant lineages, ferns, lycophytes, and bryophytes, many of these candidate genes are mainly expressed in mega- and micro-sporangia. Through in-depth comparative transcriptome analyses of Ginkgo biloba developing ovules, pollen cones, and megagametophytes we have been able to identify novel genes, likely involved in ovule development. Finally, our expression analyses support the synangial or neo-synangial hypotheses for the origin of the seed, where the sporangium developmental network was likely co-opted and restricted during integument evolution. 
    more » « less
  2. Flowering plants (angiosperms) perform a unique double fertilization in which two sperm cells fuse with two female gamete cells in the embryo sac to develop a seed. Furthermore, during land plant evolution, the mode of sexual reproduction has been modified dramatically from motile sperm in the early-diverging land plants, such as mosses and ferns as well as some gymnosperms (Ginkgo and cycads) to nonmotile sperm that are delivered to female gametes by the pollen tube in flowering plants. Recent studies have revealed the cellular dynamics and molecular mechanisms for the complex series of double fertilization processes and elucidated differences and similarities between animals and plants. Here, together with a brief comparison with animals, we review the current understanding of flowering plant zygote dynamics, covering from gamete nuclear migration, karyogamy, and polyspermy block, to zygotic genome activation as well as asymmetrical division of the zygote. Further analyses of the detailed molecular and cellular mechanisms of flowering plant fertilization should shed light on the evolution of the unique sexual reproduction of flowering plants. 
    more » « less
  3. Spatiotemporal regulation of gene expression by polycomb repressive complex 2 (PRC2) is critical for animal and plant development. The Arabidopsis fertilization independent seed (FIS)-PRC2 complex functions specifically during plant reproduction from gametogenesis to seed development. After a double fertilization event, triploid endosperm proliferates early, followed by the growth of a diploid embryo, which replaces the endosperm in Arabidopsis and many dicots. Key genes critical for endosperm proliferation such as IKU2 and MINI3 are activated after fertilization. Here we report that two MADS-box AGAMOUS-LIKE (AGL) proteins associate with the key endosperm proliferation loci and recruit the FIS-PRC2 repressive complex at 4–5 days after pollination (DAP). Interestingly, AGL9 and AGL15 only accumulate toward the end of endosperm proliferation at 4–5 DAP and promote the deposition of H3K27me3 marks at key endosperm proliferation loci. Disruption of AGL9 and AGL15 or overexpression of AGL9 or AGL15 significantly influence endosperm proliferation and cellularization. Genome-wide analysis with cleavage Under Targets and tagmentation (CUT&Tag) sequencing and RNA sequencing revealed the landscape of endosperm H3K27me3 marks and gene expression profiles in Col-0 and agl9 agl15. CUT&Tag qPCR also demonstrated the occupancy of the two MADS-box proteins and FIS-PRC2 on a few representative target loci. Our studies suggest that MADS-box proteins could potentially recruit PRC2 to regulate many other developmental processes in plants or even in fungi and animals. 
    more » « less
  4. Abstract Background and Aims Cycads are regarded as an ancient lineage of living seed plants, and hold important clues to understand the early evolutionary trends of seed plants. The molecular phylogeny and spatio-temporal diversification of one of the species-rich genera of cycads, Macrozamia, have not been well reconstructed. Methods We analysed a transcriptome dataset of 4740 single-copy nuclear genes (SCGs) of 39 Macrozamia species and two outgroup taxa. Based on concatenated (maximum parsimony, maximum likelihood) and multispecies coalescent analyses, we first establish a well-resolved phylogenetic tree of Macrozamia. To identify cyto-nuclear incongruence, the plastid protein coding genes (PCGs) from transcriptome data are extracted using the software HybPiper. Furthermore, we explore the biogeographical history of the genus and shed light on the pattern of floristic exchange between three distinct areas of Australia. Six key diagnostic characters are traced on the phylogenetic framework using two comparative methods, and infra-generic classification is investigated. Key Results The tree topologies of concatenated and multi-species coalescent analyses of SCGs are mostly congruent with a few conflicting nodes, while those from plastid PCGs show poorly supported relationships. The genus contains three major clades that correspond to their distinct distributional areas in Australia. The crown group of Macrozamia is estimated to around 11.80 Ma, with a major expansion in the last 5–6 Myr. Six morphological characters show homoplasy, and the traditional phenetic sectional division of the genus is inconsistent with this current phylogeny. Conclusions This first detailed phylogenetic investigation of Macrozamia demonstrates promising prospects of SCGs in resolving phylogenetic relationships within cycads. Our study suggests that Macrozamia, once widely distributed in Australia, underwent major extinctions because of fluctuating climatic conditions such as cooling and mesic biome disappearance in the past. The current close placement of morphologically distinct species in the phylogenetic tree may be related to neotenic events that occurred in the genus. 
    more » « less
  5. Abstract Dragon fruits are tropical fruits economically important for agricultural industries. As members of the family ofCactaceae, they have evolved to adapt to the arid environment. Here we report the draft genome ofHylocereus undatus, commercially known as the white-fleshed dragon fruit. The chromosomal level genome assembly contains 11 longest scaffolds corresponding to the 11 chromosomes ofH. undatus. Genome annotation ofH. undatusfound ~29,000 protein-coding genes, similar toCarnegiea gigantea(saguaro). Whole-genome duplication (WGD) analysis revealed a WGD event in the last common ancestor ofCactaceaefollowed by extensive genome rearrangements. The divergence time betweenH. undatusandC. giganteawas estimated to be 9.18 MYA. Functional enrichment analysis of orthologous gene clusters (OGCs) in sixCactaceaeplants found significantly enriched OGCs in drought resistance. Fruit flavor-related functions were overrepresented in OGCs that are significantly expanded inH. undatus. TheH. undatusdraft genome also enabled the discovery of carbohydrate and plant cell wall-related functional enrichment in dragon fruits treated with trypsin for a longer storage time. Lastly, genes of the betacyanin (a red-violet pigment and antioxidant with a very high concentration in dragon fruits) biosynthetic pathway were found to be co-localized on a 12 Mb region of one chromosome. The consequence may be a higher efficiency of betacyanin biosynthesis, which will need experimental validation in the future. TheH. undatusdraft genome will be a great resource to study various cactus plants. 
    more » « less