skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 28, 2026

Title: An analysis of constraint-relaxation in PDE-based inverse problems
Abstract Many inverse problems are naturally formulated as a PDE-constrained optimization problem. These non-linear, large-scale, constrained optimization problems know many challenges, of which the inherent non-linearity of the problem is an important one. In this paper, we focus on a relaxed formulation of the PDE-constrained optimization problem and provide analysis for its properties including convexity under certain assumptions. Starting from an infinite-dimensional formulation of the inverse problem with discrete data, we propose a general framework for the analysis and discretisation of such problems. The relaxed formulation of the PDE-constrained optimization problem is shown to reduce to a weighted non-linear least-squares problem. The weight matrix turns out to be the Gram matrix of solutions of the PDE, and in some cases be estimated directly from the measurements. The latter observation points to a potential way to unify recently proposed data-driven reduced-order models for inverse problems with PDE-constrained optimization. We provide a number of representative case studies and numerical examples to illustrate our findings.  more » « less
Award ID(s):
2409855
PAR ID:
10608352
Author(s) / Creator(s):
;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Inverse Problems
Volume:
41
Issue:
2
ISSN:
0266-5611
Page Range / eLocation ID:
025009
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. N/A (Ed.)
    Abstract This work unifies the analysis of various randomized methods for solving linear and nonlinear inverse problems with Gaussian priors by framing the problem in a stochastic optimization setting. By doing so, we show that many randomized methods are variants of a sample average approximation (SAA). More importantly, we are able to prove a single theoretical result that guarantees the asymptotic convergence for a variety of randomized methods. Additionally, viewing randomized methods as an SAA enables us to prove, for the first time, a single non-asymptotic error result that holds for randomized methods under consideration. Another important consequence of our unified framework is that it allows us to discover new randomization methods. We present various numerical results for linear, nonlinear, algebraic, and PDE-constrained inverse problems that verify the theoretical convergence results and provide a discussion on the apparently different convergence rates and the behavior for various randomized methods. 
    more » « less
  2. Abstract Computational inverse problems utilize a finite number of measurements to infer a discrete approximation of the unknown parameter function. With motivation from the setting of PDE-based optimization, we study the unique reconstruction of discretized inverse problems by examining the positivity of the Hessian matrix. What is the reconstruction power of a fixed number of data observations? How many parameters can one reconstruct? Here we describe a probabilistic approach, and spell out the interplay of the observation size (r) and the number of parameters to be uniquely identified (m). The technical pillar here is the random sketching strategy, in which the matrix concentration inequality and sampling theory are largely employed. By analyzing a randomly subsampled Hessian matrix, we attain a well-conditioned reconstruction problem with high probability. Our main theory is validated in numerical experiments, using an elliptic inverse problem as an example. 
    more » « less
  3. Inverse problems constrained by partial differential equations (PDEs) play a critical role in model development and calibration. In many applications, there are multiple uncertain parameters in a model which must be estimated. Although the Bayesian formulation is attractive for such problems, computational cost and high dimensionality frequently prohibit a thorough exploration of the parametric uncertainty. A common approach is to reduce the dimension by fixing some parameters (which we will call auxiliary parameters) to a best estimate and use techniques from PDE-constrained optimization to approximate properties of the Bayesian posterior distribution. For instance, the maximum a posteriori probability (MAP) and the Laplace approximation of the posterior covariance can be computed. In this article, we propose using hyperdifferential sensitivity analysis (HDSA) to assess the sensitivity of the MAP point to changes in the auxiliary parameters. We establish an interpretation of HDSA as correlations in the posterior distribution. Our proposed framework is demonstrated on the inversion of bedrock topography for the Greenland ice-sheet with uncertainties arising from the basal friction coefficient and climate forcing (ice accumulation rate). 
    more » « less
  4. In this work, we investigate the problem of incrementally solving constrained non-linear optimization problems formulated as factor graphs. Prior incremental solvers were either restricted to the unconstrained case or required periodic batch relinearizations of the objective and constraints which are expensive and detract from the online nature of the algorithm. We present InCOpt, an Augmented Lagrangian-based incremental constrained optimizer that views matrix operations as message passing over the Bayes tree. We first show how the linear system, resulting from linearizing the constrained objective, can be represented as a Bayes tree. We then propose an algorithm that views forward and back substitutions, which naturally arise from solving the Lagrangian, as upward and downward passes on the tree. Using this formulation, In-COpt can exploit properties such as fluid/online relinearization leading to increased accuracy without a sacrifice in runtime. We evaluate our solver on different applications (navigation and manipulation) and provide an extensive evaluation against existing constrained and unconstrained solvers. 
    more » « less
  5. Abstract In this article, we exploit the similarities between Tikhonov regularization and Bayesian hierarchical models to propose a regularization scheme that acts like a distributed Tikhonov regularization where the amount of regularization varies from component to component, and a computationally efficient numerical scheme that is suitable for large-scale problems. In the standard formulation, Tikhonov regularization compensates for the inherent ill-conditioning of linear inverse problems by augmenting the data fidelity term measuring the mismatch between the data and the model output with a scaled penalty functional. The selection of the scaling of the penalty functional is the core problem in Tikhonov regularization. If an estimate of the amount of noise in the data is available, a popular way is to use the Morozov discrepancy principle, stating that the scaling parameter should be chosen so as to guarantee that the norm of the data fitting error is approximately equal to the norm of the noise in the data. A too small value of the regularization parameter would yield a solution that fits to the noise (too weak regularization) while a too large value would lead to an excessive penalization of the solution (too strong regularization). In many applications, it would be preferable to apply distributed regularization, replacing the regularization scalar by a vector valued parameter, so as to allow different regularization for different components of the unknown, or for groups of them. Distributed Tikhonov-inspired regularization is particularly well suited when the data have significantly different sensitivity to different components, or to promote sparsity of the solution. The numerical scheme that we propose, while exploiting the Bayesian interpretation of the inverse problem and identifying the Tikhonov regularization with the maximum a posteriori estimation, requires no statistical tools. A clever combination of numerical linear algebra and numerical optimization tools makes the scheme computationally efficient and suitable for problems where the matrix is not explicitly available. Moreover, in the case of underdetermined problems, passing through the adjoint formulation in data space may lead to substantial reduction in computational complexity. 
    more » « less