Robot-assisted dressing could profoundly enhance the quality of life of adults with physical disabilities. To achieve this, a robot can benefit from both visual and force sensing. The former enables the robot to ascertain human body pose and garment deformations, while the latter helps maintain safety and comfort during the dressing process. In this paper, we introduce a new technique that leverages both vision and force modalities for this assistive task. Our approach first trains a vision-based dressing policy using reinforcement learning in simulation with varying body sizes, poses, and types of garments. We then learn a force dynamics model for action planning to ensure safety. Due to limitations of simulating accurate force data when deformable garments interact with the human body, we learn a force dynamics model directly from real-world data. Our proposed method combines the vision-based policy, trained in simulation, with the force dynamics model, learned in the real world, by solving a constrained optimization problem to infer actions that facilitate the dressing process without applying excessive force on the person. We evaluate our system in simulation and in a real-world human study with 10 participants across 240 dressing trials, showing it greatly outperforms prior baselines.
more »
« less
Learning dynamics on invariant measures using PDE-constrained optimization
We extend the methodology in Yang et al. [SIAM J. Appl. Dyn. Syst. 22, 269–310 (2023)] to learn autonomous continuous-time dynamical systems from invariant measures. The highlight of our approach is to reformulate the inverse problem of learning ODEs or SDEs from data as a PDE-constrained optimization problem. This shift in perspective allows us to learn from slowly sampled inference trajectories and perform uncertainty quantification for the forecasted dynamics. Our approach also yields a forward model with better stability than direct trajectory simulation in certain situations. We present numerical results for the Van der Pol oscillator and the Lorenz-63 system, together with real-world applications to Hall-effect thruster dynamics and temperature prediction, to demonstrate the effectiveness of the proposed approach.
more »
« less
- Award ID(s):
- 1913129
- PAR ID:
- 10608383
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- Chaos: An Interdisciplinary Journal of Nonlinear Science
- Volume:
- 33
- Issue:
- 6
- ISSN:
- 1054-1500
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cellular network configuration is critical for network performance. Current practice is labor-intensive, errorprone, and far from optimal. To automate efficient cellular network configuration, in this work, we propose an onlinelearning-based joint-optimization approach that addresses a few specific challenges: limited data availability, convoluted sample data, highly complex optimization due to interactions among neighboring cells, and the need to adapt to network dynamics. In our approach, to learn an appropriate utility function for a cell, we develop a neural-network-based model that addresses the convoluted sample data issue and achieves good accuracy based on data aggregation. Based on the utility function learned, we formulate a global network configuration optimization problem. To solve this high-dimensional nonconcave maximization problem, we design a Gibbs-sampling-based algorithm that converges to an optimal solution when a technical parameter is small enough. Furthermore, we design an online scheme that updates the learned utility function and solves the corresponding maximization problem efficiently to adapt to network dynamics. To illustrate the idea, we use the case study of pilot power configuration. Numerical results illustrate the effectiveness of the proposed approach.more » « less
-
Cellular network configuration is critical for network performance. Current practice is labor-intensive, errorprone, and far from optimal. To automate efficient cellular network configuration, in this work, we propose an onlinelearning-based joint-optimization approach that addresses a few specific challenges: limited data availability, convoluted sample data, highly complex optimization due to interactions among neighboring cells, and the need to adapt to network dynamics. In our approach, to learn an appropriate utility function for a cell, we develop a neural-network-based model that addresses the convoluted sample data issue and achieves good accuracy based on data aggregation. Based on the utility function learned, we formulate a global network configuration optimization problem. To solve this high-dimensional nonconcave maximization problem, we design a Gibbs-samplingbased algorithm that converges to an optimal solution when a technical parameter is small enough. Furthermore, we design an online scheme that updates the learned utility function and solves the corresponding maximization problem efficiently to adapt to network dynamics. To illustrate the idea, we use the case study of pilot power configuration. Numerical results illustrate the effectiveness of the proposed approach.more » « less
-
Abstract Finding similarities between model parameters across different catchments has proved to be challenging. Existing approaches struggle due to catchment heterogeneity and non‐linear dynamics. In particular, attempts to correlate catchment attributes with hydrological responses have failed due to interdependencies among variables and consequent equifinality. Machine Learning (ML), particularly the Long Short‐Term Memory (LSTM) approach, has demonstrated strong predictive and spatial regionalization performance. However, understanding the nature of the regionalization relationships remains difficult. This study proposes a novel approach to partially decouple learning the representation of (a) catchment dynamics by using theHydroLSTMarchitecture and (b) spatial regionalization relationships by using aRandom Forest(RF) clustering approach to learn the relationships between the catchment attributes and dynamics. This coupled approach, calledRegional HydroLSTM, learns a representation of “potential streamflow” using a single cell‐state, while the output gate corrects it to correspond to the temporal context of the current hydrologic regime. RF clusters mediate the relationship between catchment attributes and dynamics, allowing identification of spatially consistent hydrological regions, thereby providing insight into the factors driving spatial and temporal hydrological variability. Results suggest that by combining complementary architectures, we can enhance the interpretability of regional machine learning models in hydrology, offering a new perspective on the “catchment classification” problem. We conclude that an improved understanding of the underlying nature of hydrologic systems can be achieved by careful design of ML architectures to target the specific things we are seeking to learn from the data.more » « less
-
In a complex system, the interactions between individual agents often lead to emergent collective behavior such as spontaneous synchronization, swarming, and pattern formation. Beyond the intrinsic properties of the agents, the topology of the network of interactions can have a dramatic influence over the dynamics. In many studies, researchers start with a specific model for both the intrinsic dynamics of each agent and the interaction network and attempt to learn about the dynamics of the model. Here, we consider the inverse problem: given data from a system, can one learn about the model and the underlying network? We investigate arbitrary networks of coupled phase oscillators that can exhibit both synchronous and asynchronous dynamics. We demonstrate that, given sufficient observational data on the transient evolution of each oscillator, machine learning can reconstruct the interaction network and identify the intrinsic dynamics.more » « less
An official website of the United States government

