<p><b> Introduction </b> <br> The National Science Foundations Center for Oldest Ice Exploration (<a href="https://www.coldex.org">NSF COLDEX</a>) is a Science and Technology Center working to extend the record of atmospheric gases, temperature and ice sheet history to greater than 1 million years. As part of this effort, NSF COLDEX has been searching for a site for a continuous ice core extending through the mid-Pleistocene transition. Two seasons of airborne survey were conducted from South Pole Station across the southern flank of Dome A. </p> <p><b> 2023-2024 Field Season </b> <br> In the 2023-2024 field season (CXA2), and using a BT-67 Basler, NSF COLDEX conducted 17 flights from South Pole Station toward the southern flank of Dome C. Three test flights were conducted from McMurdo Station. Instrumentation included the <a href="https://doi.org/10.18738/T8/J38CO5">60 MHz MARFA ice penetrating radar </a> from the University of Texas Institute for Geophysics, a <a href="https://doi.org/10.1109/IGARSS53475.2024.10640448">UHF ice penetrating radar </a> from the Center for Remote Sensing and Integrated Systems; an GT-2 Gravimeter, and LD-90 laser altimeter and an G-823 Magnetometer. </p> <p><b> Basal specularity content </b> <br> These basal specularity content were derived from comparing 1D and 2D focused MARFA data (<a href="http://doi.org/10.1109/TGRS.2007.897416">Peters et al., 2007</a>). By comparing bed echo strengths for different focusing apertures, and accounting for the ranges and angles involved, we can derive the "specularity content" of the bed echo, a proxy for small scale bed roughness and a good indicator for subglacial water pressure in regions of distributed subglacial water (<a href="https://doi.org/10.1109/LGRS.2014.2337878">Schroeder et al., 2014, IEEE GRSL </a>, <a href="https://doi.org/10.1016/j.epsl.2019.115961">Dow et al., 2019, EPSL </a>) and smooth deforming bed material (<a href="http://doi.org/10.1002/2014GL061645">Schroeder et al., 2014, GRL</a>, <a href="http://dx.doi/org/10.1098/rsta.2014.0297">Young et al., 2016, PTRS</a>. Specularity data are inherently noisy, so these products have been smoothed with a 1 km filter.</p>
more »
« less
NSF COLDEX Ice Penetrating Radar Derived Grids of the Southern Flank of Dome A:Subtitle
<p>NSF COLDEX performed two airborne campaigns from South Pole Station over the Southern Flank of Dome A and 2022-23 and 2023-24, searching for a potential site of a continuous ice core that could sample the mid-Pleistocene transition. Ice thickness data extracted from the MARFA radar system has allow for a new understanding of this region.</p> <p>Here we generate crustal scale maps of ice thickness, bed elevation, specularity content, subglacial RMS deviation and fractional basal ice thickness with 1 km sampling, and 10 km resolution. We include both masked and unmasked grids.</p> <p> The projection is in the SCAR standard ESPG:3031 polar stereographic projection with true scale at 71˚S.</p> <p>These geotiffs were generated using performed using GMT6.5 (<a href="https://doi.org/10.1029/2019GC008515">Wessel et al., 2019</a>) using the pygmt interface, by binning the raw data to 2.5 km cells, and using the <a href="https://github.com/sakov/nn-c"> nnbathy </a> program to apply natural neighbor interpolation to 1 km sampling. A 10 km Gaussian filter - representing typical lines spacings - was applied and then a mask was applied for all locations where the nearest data point was further than 8 km. </p> Ice thickness, bed elevation and RMS deviation @ 400 m length scale (<a href="http://dx.doi.org/10.1029/2000JE001429">roughness</a>) data includes the following datasets: <ul> <li> UTIG/CRESIS <a href="https://doi.org/10.18738/T8/J38CO5">NSF COLDEX Airborne MARFA data</a></li> <li> British Antarctic Survey <a href="https://doi.org/10.5285/0f6f5a45-d8af-4511-a264-b0b35ee34af6">AGAP-North</a></li> <li> LDEO <a href="https://doi.org/10.1594/IEDA/317765"> AGAP-South </a></li> <li> British Antarctic Survey <a href="https://doi.org/10.5270/esa-8ffoo3e">Polargap</a></li> <li> UTIG Support Office for Airborne Research <a href="https://doi.org/10.15784/601588">Pensacola-Pole Transect (PPT) </a></li> <li> NASA/CReSIS <a href="https://doi.org/10.5067/GDQ0CUCVTE2Q"> 2016 and 2018 Operation Ice Bridge </a> </li> <li> ICECAP/PRIC <a href="https://doi.org/10.15784/601437"> SPICECAP Titan Dome Survey </a> </ul> <p>Specularity content (<a href="https://doi.org/10.1109/LGRS.2014.2337878">Schroeder et al. 2014</a>) is compiled from <a href="https://doi.org/10.18738/T8/KHUT1U"> Young et al. 2025a </a> and <a href="https://doi.org/10.18738/T8/6T5JS6"> Young et al. 2025b</a>.</p> <p>Basal ice fractional thickness is complied from manual interpretation by Vega Gonzàlez, Yan and Singh. </p> <p>Code to generated these grids can be found at <a href="https://github.com/smudog/COLDEX_dichotomy_paper_2025"> at github.com </a></p>
more »
« less
- PAR ID:
- 10608392
- Publisher / Repository:
- Texas Data Repository
- Date Published:
- Subject(s) / Keyword(s):
- Earth and Environmental Sciences ice penetraing radar Antarctica radioglaciology ice sheet
- Format(s):
- Medium: X Size: 575165; 4817112; 4817112; 4816810; 4816810; 4817112; 4817112; 2283471; 570672; 4816810; 4816810; 1364643; 2379379; 4816810; 4817112 Other: image/png; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/png; image/png; image/tiff; image/tiff; image/png; image/png; image/tiff; image/tiff
- Size(s):
- 575165 4817112 4817112 4816810 4816810 4817112 4817112 2283471 570672 4816810 4816810 1364643 2379379 4816810 4817112
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
<p><b> Introduction </b> <br> The National Science Foundations Center for Oldest Ice Exploration (<a href="https://www.coldex.org">NSF COLDEX</a>) is a Science and Technology Center working to extend the record of atmospheric gases, temperature and ice sheet history to greater than 1 million years. As part of this effort, NSF COLDEX has been searching for a site for a continuous ice core extending through the mid-Pleistocene transition. Two seasons of airborne survey were conducted from South Pole Station across the southern flank of Dome A. </p> <p><b> 2022-2023 Field Season </b> <br> In the 2022-20223 field season (CXA1), and using a BT-67 Basler, NSF COLDEX conducted 13 full flights and one weather abort from South Pole Station toward the southern flank of Dome C; as well as 1 survey flight toward Hercules Dome in support of the Hercules Dome Drilling project. Three test flights were conducted from McMurdo Station. Instrumentation included the <a href="https://doi.org/10.18738/T8/J38CO5">60 MHz MARFA ice penetrating radar </a> from the University of Texas Institute for Geophysics, a <a href="https://doi.org/10.1109/IGARSS53475.2024.10640448">UHF ice penetrating radar </a> from the Center for Remote Sensing and Integrated Systems; an GT-2 Gravimeter, and LD-90 laser altimeter and an G-823 Magnetometer. </p> <p><b> Basal specularity content </b> <br> These basal specularity content were derived from comparing 1D and 2D focused MARFA data (<a href="http://doi.org/10.1109/TGRS.2007.897416">Peters et al., 2007</a>). By comparing bed echo strengths for different focusing apertures, and accounting for the ranges and angles involved, we can derive the "specularity content" of the bed echo, a proxy for small scale bed roughness and a good indicator for subglacial water pressure in regions of distributed subglacial water (<a href="https://doi.org/10.1109/LGRS.2014.2337878">Schroeder et al., 2014, IEEE GRSL </a>, <a href="https://doi.org/10.1016/j.epsl.2019.115961">Dow et al., 2019, EPSL </a>) and smooth deforming bed material (<a href="http://doi.org/10.1002/2014GL061645">Schroeder et al., 2014, GRL</a>, <a href="http://dx.doi/org/10.1098/rsta.2014.0297">Young et al., 2016, PTRS</a>. Specularity data are inherently noisy, so these products have been smoothed with a 1 km filter.</p>more » « less
-
{"Abstract":["This classified_bed data product represents the radar bed classification shown in <a href="https://doi.org/10.1098/rsta.2014.0297">Young et al., 2016</a>. Values of 0 represent specularity content below 20%; values of 3.3 represent specularity content above 20% and energy 1 microsecond below the bed 15 dB lower than the bed echo, and values of 6.7 represent specularity content above 20% and energy 1 microsecond below the bed 15 dB within than the bed echo. Grids for specularity content and post bed echo are also available. Data is available as COARDS-compliant netCDF-4/HDF5 grids (.grd) and GeoTiffs (.tiff), both in EPSG 3031 (Antarctic Polar Stereographic) projection.\n<p>\n<p>\nData were gridded using <a href="https://docs.generic-mapping-tools.org/6.1/gmt.html"> GMT6.1</a> and the <a href="https://github.com/sakov/nn-c">nnbathy</a> natural neighbor interpolator. Cell size was 1 km, gaussian filter distance was 5 km, and mask radius was 2 km.\n<p>\nBrowse images, with Bedmap3 (Pritchard et al., 2025) surface elevation contours and MEASURES phase derived surface velocities (Mouginot et al. 2019) are available for each dataset.\n\n<p>\n<p>\nAn interpretation of the values in the classified_bed product is that low values are rough bed, intermediate values are isotropic wet bed, and high values are anisotropic wet bed.\n\nVersion 1 includes data from the 2016 paper, including AGASEA over Thwaites Glacier (Holt et al., 2006), ATRS over West Antarctica (Peters et al., 2005), GIMBLE over Marie Byrd Land (Young et al, 2013) and parts of ICECAP over Wilkes Subglacial Basin, Dome C, Highland B and Totten Glacier. (Young et al, 2011, Young et al., 2016). We expect updates to the coverage as part of work funded by the Arête Glaciers Initiative.\n\n<p>\n<b>References</b>\n<br>\nHolt, J. W., Blankenship, D. D., Morse, D. L., Young, D. A., Peters, M. E., Kempf, S. D., Richter, T. G., Vaughan, D. G., and Corr, H., New boundary conditions for the West Antarctic ice sheet: subglacial topography of the Thwaites and Smith Glacier catchments, 2006, Geophysical Research Letters, 33 (L09502), pp., https://doi.org/10.1029/2005GL025561\n<br>\nMouginot, J., Rignot, E., and Scheuchl, B., Continent-wide, interferometric SAR phase, mapping of Antarctic ice velocity, 2019, Geophysical Research Letters, 46(16), pp.9710-9718, https://doi.org/10.1029/2019GL083826\n<br>\nPeters, M. E., Blankenship, D. D., and Morse, D. L., Analysis techniques for coherent airborne radar sounding: Application to West Antarctic ice streams, 2005 ,Journal of Geophysical Research, 110(B06303), pp.,https://doi.org/10.1029/2004JB003222\n<br>\nPritchard, H. D., and others.,Bedmap3 updated ice bed, surface and thickness gridded datasets for Antarctica,2025,Scientific Data,12(1), pp.414,https://doi.org/10.1038/s41597-025-04672-y\n<br>\nYoung, D. A., D. D. Blankenship, J. S. Greenbaum, E. Quartini, G. L. Muldoon, F. Habbal, L. E. Lindzey, C. A. Greene, E. M. Powell, G. C. Ng, T. G. Richter, G. Echeverry, and S. Kempf, 2024, Geophysical Investigations of Marie Byrd Land Lithospheric Evolution (GIMBLE) Airborne VHF Radar Transects: 2012/2013 and 2014/2015, https://doi.org/10.18738/T8/BMXUHX, Texas Data Repository\n<br>\nYoung, D. A., Wright, A. P., Roberts, J. L., Warner, R. C., Young, N. W., Greenbaum, J. S., Schroeder, D. M., Holt, J. W., Sugden, D. E., Blankenship, D. D., van Ommen, T. D., and Siegert, M. J.,A dynamic early East Antarctic Ice Sheet suggested by ice covered fjord landscapes, 2011, Nature, 474, pp.72-75, https://doi.org/10.1038/nature10114\n<br>\nYoung, D. A., Schroeder, D. M., Blankenship, D. D., Kempf, S. D., and Quartini, E.,The distribution of basal water between Antarctic subglacial lakes from radar sounding,2016,Philosophical Transactions of the Royal Society A, 374 (20140297), pp.1-21, https://doi.org/10.1098/rsta.2014.0297\n\n<p>\n<b>Change Log</b>\n<br>\nChanges from V1: changes to gridding parameters to more closely match the figures from Young 2016; updated metadata gridding description"]}more » « less
-
<p>This is an example line of NSF COLDEX MARFA ice penetrating radar data (CLX/MKB2o/R66a) that has been processed to provide azimuthal information about radar echos from below, and to the front and back of the aircraft. The input was 1 meter slow time resampled coherent range record with phase intact. The data were pulse compressed and an azimuth fast Fourier transform was used to convert to azimuth angles in 1 km chunks, then slices at -19°, +19˚ and nadir were selected for these numpy arrays. These can be displayed as an RGB image with Blue = nadir, red = forward and green = rear</p> <p>The nadir slice should dominate specular echos, as seen with englacial reflecting horizons; where this trades to more balanced returns across all three channels, scattering dominates, as with rough bed rock or volume scattering. A gmt text file contains information about where this transition occurs in the ice column.</p> <p>Details in delay Doppler processing can be found in <a href="http://pds-geosciences.wustl.edu/mro/mro-m-sharad-5-radargram- v1/mrosh_2001/document/rgram_processing.pdf">Campbell et al., 2014</a>; the idea for using this approach for looking at englacial structure was discussed by <a href="https://doi.org/10.5194/egusphere-egu23-2856">Arenas-Pingarrón, Á. et al., 2023</a>. Details of HiCARs/MARFA focused processing can be found in <a href="http://dx.doi.org/10.1109/TGRS.2007.897416">Peters et al., 2007</a>.</p>more » « less
-
This is a pointer to the Open Polar Radar website and flight based CReSIS SAR processed data. These transect projected radargrams were collected as part of the Center for Oldest Ice Exploration (COLDEX) Science and Technology Center (https://www.coldex.org) in the 2022/23 (CXA1) and 2023/24 (CXA2) airborne field seasons. Raw 3 TB data from both seasons is deposited at the USAP data center at https://doi.org/10.15784/601768. The set of images in this archive was designed for easy, non expert, access to radargrams, organized according to survey design. 2022-23 (CXA1) flight based HDF5/matlab format data is available here: https://data.cresis.ku.edu/data/rds/2022_Antarctica_BaslerMKB/ 2023-24 (CXA2) flight based data HDF5/matlab format is available here: https://data.cresis.ku.edu/data/rds/2023_Antarctica_BaslerMKB/ 2022-23 (CXA1) transect based (science organized) unfocused data in netCDF format is available here: https://doi.org/10.18738/T8/XPMLCC 2023-24 (CXA2) transect based (science organized) unfocused data in netCDF format is available here: https://doi.org/10.18738/T8/FV6VNT Reprojected transect based images (science organized) in standard image (png, jpg) formats will be available here: ttps://doi.org/10.18738/T8/NEF2XMmore » « less
An official website of the United States government
